Renren Jin


2024

pdf bib
LHMKE: A Large-scale Holistic Multi-subject Knowledge Evaluation Benchmark for Chinese Large Language Models
Chuang Liu | Renren Jin | Yuqi Ren | Deyi Xiong
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Chinese Large Language Models (LLMs) have recently demonstrated impressive capabilities across various NLP benchmarks and real-world applications. However, the existing benchmarks for comprehensively evaluating these LLMs are still insufficient, particularly in terms of measuring knowledge that LLMs capture. Current datasets collect questions from Chinese examinations across different subjects and educational levels to address this issue. Yet, these benchmarks primarily focus on objective questions such as multiple-choice questions, leading to a lack of diversity in question types. To tackle this problem, we propose LHMKE, a Large-scale, Holistic, and Multi-subject Knowledge Evaluation benchmark in this paper. LHMKE is designed to provide a comprehensive evaluation of the knowledge acquisition capabilities of Chinese LLMs. It encompasses 10,465 questions across 75 tasks covering 30 subjects, ranging from primary school to professional certification exams. Notably, LHMKE includes both objective and subjective questions, offering a more holistic evaluation of the knowledge level of LLMs. We have assessed 11 Chinese LLMs under the zero-shot setting, which aligns with real examinations, and compared their performance across different subjects. We also conduct an in-depth analysis to check whether GPT-4 can automatically score subjective predictions. Our findings suggest that LHMKE is a challenging and advanced testbed for Chinese LLMs.

2023

pdf bib
CS2W: A Chinese Spoken-to-Written Style Conversion Dataset with Multiple Conversion Types
Zishan Guo | Linhao Yu | Minghui Xu | Renren Jin | Deyi Xiong
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Spoken texts (either manual or automatic transcriptions from automatic speech recognition (ASR)) often contain disfluencies and grammatical errors, which pose tremendous challenges to downstream tasks. Converting spoken into written language is hence desirable. Unfortunately, the availability of datasets for this is limited. To address this issue, we present CS2W, a Chinese Spoken-to-Written style conversion dataset comprising 7,237 spoken sentences extracted from transcribed conversational texts. Four types of conversion problems are covered in CS2W: disfluencies, grammatical errors, ASR transcription errors, and colloquial words. Our annotation convention, data, and code are publicly available at https://github.com/guozishan/CS2W.

2022

pdf bib
Informative Language Representation Learning for Massively Multilingual Neural Machine Translation
Renren Jin | Deyi Xiong
Proceedings of the 29th International Conference on Computational Linguistics

In a multilingual neural machine translation model that fully shares parameters across all languages, an artificial language token is usually used to guide translation into the desired target language. However, recent studies show that prepending language tokens sometimes fails to navigate the multilingual neural machine translation models into right translation directions, especially on zero-shot translation. To mitigate this issue, we propose two methods, language embedding embodiment and language-aware multi-head attention, to learn informative language representations to channel translation into right directions. The former embodies language embeddings into different critical switching points along the information flow from the source to the target, aiming at amplifying translation direction guiding signals. The latter exploits a matrix, instead of a vector, to represent a language in the continuous space. The matrix is chunked into multiple heads so as to learn language representations in multiple subspaces. Experiment results on two datasets for massively multilingual neural machine translation demonstrate that language-aware multi-head attention benefits both supervised and zero-shot translation and significantly alleviates the off-target translation issue. Further linguistic typology prediction experiments show that matrix-based language representations learned by our methods are capable of capturing rich linguistic typology features.