Leiyu Pan


2024

pdf bib
An Empirical Study on the Robustness of Massively Multilingual Neural Machine Translation
Supryadi Supryadi | Leiyu Pan | Deyi Xiong
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Massively multilingual neural machine translation (MMNMT) has been proven to enhance the translation quality of low-resource languages. In this paper, we empirically investigate the translation robustness of Indonesian-Chinese translation in the face of various naturally occurring noise. To assess this, we create a robustness evaluation benchmark dataset for Indonesian-Chinese translation. This dataset is automatically translated into Chinese using four NLLB-200 models of different sizes. We conduct both automatic and human evaluations. Our in-depth analysis reveal the correlations between translation error types and the types of noise present, how these correlations change across different model sizes, and the relationships between automatic evaluation indicators and human evaluation indicators. The dataset is publicly available at https://github.com/tjunlp-lab/ID-ZH-MTRobustEval.

pdf bib
Can Large Language Models Learn Translation Robustness from Noisy-Source In-context Demonstrations?
Leiyu Pan | Yongqi Leng | Deyi Xiong
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models (LLMs) have been used for machine translation. When provided with prompts and source sentences, LLMs can achieve impressive translation results. However, the robustness of these LLMs remains a significant challenge, as they often struggle to accurately translate sentences in the presence of noise, even when using similarity-based in-context learning methods. This work proposes a research scheme for studying machine translation robustness on LLMs, investigating whether LLMs can learn translation robustness from noisy-source demonstration examples. Through experiments on different models, languages, and noise types, we empirically demonstrate that LLMs can learn how to handle noise and translation methods from noisy-source demonstration examples, thereby improving their translation performance on noisy sentences. Furthermore, we find that increasing the noise ratio appropriately for the noisy-source demonstration examples can enhance the translation robustness of LLMs. Additionally, we also attempt to investigate scenarios where LLMs are more likely to learn translation robustness for mixed and specific types of noise. We find that the model’s performance varies across different noise settings.

2023

pdf bib
Is Robustness Transferable across Languages in Multilingual Neural Machine Translation?
Leiyu Pan | Supryadi | Deyi Xiong
Findings of the Association for Computational Linguistics: EMNLP 2023

Robustness, the ability of models to maintain performance in the face of perturbations, is critical for developing reliable NLP systems. Recent studies have shown promising results in improving the robustness of models through adversarial training and data augmentation. However, in machine translation, most of these studies have focused on bilingual machine translation with a single translation direction. In this paper, we investigate the transferability of robustness across different languages in multilingual neural machine translation. We propose a robustness transfer analysis protocol and conduct a series of experiments. In particular, we use character-, word-, and multi-level noises to attack the specific translation direction of the multilingual neural machine translation model and evaluate the robustness of other translation directions. Our findings demonstrate that the robustness gained in one translation direction can indeed transfer to other translation directions. Additionally, we empirically find scenarios where robustness to character-level noise and word-level noise is more likely to transfer.