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Abstract

We describe the annotation of chemical
named entities in scientific text. A set of an-
notation guidelines defines 5 types of named
entities, and provides instructions for the
resolution of special cases. A corpus of full-
text chemistry papers was annotated, with an
inter-annotator agreement

�
score of 93%.

An investigation of named entity recogni-
tion using LingPipe suggests that

�
scores

of 63% are possible without customisation,
and scores of 74% are possible with the ad-
dition of custom tokenisation and the use of
dictionaries.

1 Introduction

Recent efforts in applying natural language pro-
cessing to natural science texts have focused on
the recognition of genes and proteins in biomedi-
cal text. These large biomolecules are—mostly—
conveniently described as sequences of subunits,
strings written in alphabets of 4 or 20 letters. Ad-
vances in sequencing techniques have lead to a boom
in genomics and proteomics, with a concomitant
need for natural language processing techniques to
analyse the texts in which they are discussed.

However, proteins and nucleic acids provide only
a part of the biochemical picture. Smaller chemical
species, which are better described atom-by-atom,
play their roles too, both in terms of their inter-
actions with large biomolecules like proteins, and
in the more general biomedical context. A num-
ber of resources exist to provide chemical infor-
mation to the biological community. For example,

the National Center For Biotechnology Information
(NCBI) has added the chemical database PubChem1

to its collections of bioinformatics data, and the on-
tology ChEBI (Chemical Entities of Biological In-
terest) (de Matos et al., 2006) has been added to the
Open Biological Ontologies (OBO) family.

Small-molecule chemistry also plays a role in
biomedical natural language processing. PubMed
has included abstracts from medicinal chemistry
journals for a long time, and is increasingly carry-
ing other chemistry journals too. Both the GENIA
corpus (Kim et al., 2003) and the BioIE cytochrome
P450 corpus (Kulick et al., 2004) come with named
entity annotations that include a proportion of chem-
icals, and at least a few abstracts that are recognis-
able as chemistry abstracts.

Chemical named entity recognition enables a
number of applications. Linking chemical names to
chemical structures, by a mixture of database lookup
and the parsing of systematic nomenclature, allows
the creation of semantically enhanced articles, with
benefits for readers. An example of this is shown in
the Project Prospect2 annotations by the Royal So-
ciety of Chemistry (RSC). Linking chemical NER
to chemical information retrieval techniques allows
corpora to be searched for chemicals with similar
structures to a query molecule, or chemicals that
contain a particular structural motif (Corbett and
Murray-Rust, 2006). With information extraction
techniques, chemicals could be linked to their prop-
erties, applications and reactions, and with tradi-
tional gene/protein NLP techniques, it could be pos-

1http://pubchem.ncbi.nlm.nih.gov/
2http://www.projectprospect.org/
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sible to discover new links between chemical data
and bioinformatics data.

A few chemical named entity recognition (Cor-
bett and Murray-Rust, 2006; Townsend et al., 2005;
Vasserman, 2004; Kemp and Lynch, 1998; Sun et
al., 2007) or classification (Wilbur et al., 1999) sys-
tems have been published. A plugin for the GATE
system3 will also recognise a limited range of chem-
ical entities. Other named entity recognition or
classification systems (Narayanaswamy et al., 2003;
Torii et al., 2004; Torii and Vijay-Shanker, 2002;
Spasic and Ananiadou, 2004) sometimes include
chemicals as well as genes, proteins and other bio-
logical entities. However, due to differences in cor-
pora and the scope of the task, it is difficult to com-
pare them. There has been no chemical equivalent
of the JNLPBA (Kim et al., 2004) or BioCreAtIvE
(Yeh et al., 2005) evaluations. Therefore, a corpus
and a task definition are required.

To find an upper bound on the levels of perfor-
mance that are available for the task, it is necessary
to study the inter-annotator agreement for the man-
ual annotation of the texts. In particular, it is useful
to see to what extent the guidelines can be applied by
those not involved in their development. Producing
guidelines that enable a highly consistent annotation
may raise the quality of the results of any machine-
learning techniques that use training data applied to
the guidelines, and producing guidelines that cover
a broad range of subdomains is also important (Din-
gare et al., 2005).

2 Annotation Guidelines

We have prepared a set of guidelines for the an-
notation of the names of chemical compounds and
related entities in scientific papers. These guide-
lines grew out of work on PubMed abstracts, and
have since been developed with reference to organic
chemistry journals, and later a range of journals en-
compassing the whole of chemistry.

Our annotation guidelines focus on the chemicals
themselves; we believe that these represent the ma-
jor source of rare words in chemistry papers, and
are of the greatest interest to end-users. Further-
more, many chemical names are formed systemat-
ically or semi-systematically, and can be interpreted

3http://www.gate.ac.uk/

without resorting to dictionaries and databases. As
well as chemical names themselves, we also con-
sider other words or phrases that are formed from
chemical names.

The various types are summarised in Table 1.

Type Description Example
CM chemical compound citric acid
RN chemical reaction 1,3-dimethylation
CJ chemical adjective pyrazolic
ASE enzyme methylase
CPR chemical prefix 1,3-

Table 1: Named entity types

The logic behind the classes is best explained with
an example drawn from the corpus described in the
next section:

In addition, we have found in previous
studies that the Zn �

�
–Tris system is also

capable of efficiently hydrolyzing other
�

-
lactams, such as clavulanic acid, which
is a typical mechanism-based inhibitor of
active-site serine

�
-lactamases (clavulanic

acid is also a fairly good substrate of the
zinc-

�
-lactamase from B. fragilis).

Here, ‘clavulanic acid’ is a specific chemical com-
pound (a CM), referred to by a trivial (unsystem-
atic) name, and ‘

�
-lactams’ is a class of chemi-

cal compounds (also a CM), defined by a particu-
lar structural motif. ‘Zn �

�
–Tris’ is another CM (a

complex rather than a molecule), and despite be-
ing named in an ad hoc manner, the name is com-
positional and it is reasonably clear to a trained
chemist what it is. ‘Serine’ (another CM) can be
used to refer to an amino acid as a whole compound,
but in this case refers to it as a part of a larger
biomolecule. The word ‘hydrolyzing’ (an RN) de-
notes a reaction involving the chemical ‘water’. ‘

�
-

lactamases’ (an ASE) denotes a class of enzymes
that process

�
-lactams, and ‘zinc-

�
-lactamase’ (an-

other ASE) denotes a
�

-lactamase that uses zinc.
By our guidelines, the terms ‘mechanism-based in-
hibitor’ or ‘substrate’ are not annotated, as they de-
note a chemical role, rather than giving information
about the structure or composition of the chemicals.
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The full guidelines occupy 31 pages (including a
quick reference section), and contain 93 rules. Al-
most all of these have examples, and many have sev-
eral examples.

A few distinctions need to be explained here. The
classes RN, CJ and ASE do not include all reactions,
adjectives or enzymes, but only those that entail
specific chemicals or classes of chemicals—usually
by being formed by the modification of a chemical
name—for example, ‘

�
-lactamases’ in the example

above is formed from the name of a class of chem-
icals. Words derived from Greek and Latin words
for ‘water’, such as ‘aqueous’ and ‘hydrolysis’, are
included when making these annotations.

The class CPR consists of prefixes, more often
found in systematic chemical names, giving details
of the geometry of molecules, that are attached to
normal English words. For example, the chemi-
cal 1,2-diiodopentane is a 1,2-disubstituted pentane,
and the ‘1,2-’ forms the CPR in ‘1,2-disubstituted’.
Although these contructions sometimes occur as in-
fixes within chemical names, we have only seen
these used as prefixes outside of them. We believe
that identifying these prefixes will be useful in the
adaptation of lexicalised parsers to chemical text.

The annotation task includes a small amount of
word sense disambiguation. Although most chemi-
cal names do not have non-chemical homonyms, a
few do. Chemical elements, and element symbols,
give particular problems. Examples of this include
‘lead’, ‘In’ (indium), ‘As’ (arsenic), ‘Be’ (beryl-
lium), ‘No’ (nobelium) and ‘K’ (potassium—this is
confusable with Kelvin). These are only annotated
when they occur in their chemical sense.

2.1 Related Work

We know of two publicly available corpora that also
include chemicals in their named-entity markup. In
both of these, there are significant differences to
many aspects of the annotation. In general, our
guidelines tend to give more importance to concepts
regarding chemical structure, and less importance to
biological role, than the other corpora do.

The GENIA corpus (Kim et al., 2003) in-
cludes several different classes for chemi-
cals. Our class CM roughly corresponds to
the union of GENIA’s atom, inorganic,
other organic compound, nucleotide

and amino acid monomer classes, and also
parts of lipid and carbohydrate (we ex-
clude macromolecules such as lipoproteins and
lipopolysaccharides). Occasionally terms that
match our class RN are included as other name.
Our CM class also includes chemical names
that occur within enzyme or other protein names
(e.g. ‘inosine-5 � -monophosphate’ in ‘inosine-5 � -
monophosphate dehydrogenase’) whereas the
GENIA corpus (which allows nesting) typically
does not. The GENIA corpus also sometimes
includes qualifiers in terms, giving ‘intracellular
calcium’ where we would only annotate ‘calcium’,
and also includes some role/application terms such
as ‘antioxidant’ and ‘reactive intermediate’.

The BioIE P450 corpus (Kulick et al., 2004), by
contrast, includes chemicals, proteins and other sub-
stances such as foodstuffs in a single category called
‘substance’. Again, role terms such as ‘inhibitor’ are
included, and may be merged with chemical names
to make entities such as ‘fentanyl metabolites’ (we
would only mark up ‘fentanyl’). Fragments of
chemicals such as ‘methyl group’ are not marked up;
in our annotations, the ‘methyl’ is marked up.

The BioIE corpus was produced with extensive
guidelines; in the GENIA corpus, much more was
left to the judgement of the annotators. These lead
to inconsistencies, such as whether to annotate ‘an-
tioxidant’ (our guidelines treat this as a biological
role, and do not mark it up). We are unaware of an
inter-annotator agreement study for either corpus.

Both of these corpora include other classes of
named entities, and additional information such as
sentence boundaries.

3 Inter-annotator Agreement

3.1 Related Work

We are unaware of any studies of inter-annotator
agreement with regards to chemicals. However, a
few studies of gene/protein inter-annotator agree-
ment do exist. Demetriou and Gaizauskas (2003)
report an

�
score of 89% between two domain ex-

perts for a task involving various aspects of protein
science. Morgan et al. (2004) report an

�
score of

87% between a domain expert and a systems devel-
oper for D. melanogaster gene names. Vlachos and
Gasperin (2006) produced a revised version of the
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guidelines for the task, and were able to achieve an
�

score of 91%, and a kappa of 0.905, between a
computational linguist and a domain expert.

3.2 Subjects

Three subjects took part in the study. Subject A
was a chemist and the main author of the guidelines.
Subject B was another chemist, highly involved in
the development of the guidelines. Subject C was a
PhD student with a chemistry degree. His involve-
ment in the development of guidelines was limited to
proof-reading an early version of the guidelines. C
was trained by A, by being given half an hour’s train-
ing, a test paper to annotate (which satisfied A that C
understood the general principles of the guidelines),
and a short debriefing session before being given the
papers to annotate.

3.3 Materials

The study was performed on 14 papers (full pa-
pers and communications only, not review articles
or other secondary publications) published by the
Royal Society of Chemistry. These were taken from
the journal issues from January 2004 (excluding a
themed issue of one of the journals). One paper was
randomly selected to represent each of the 14 jour-
nals that carried suitable papers. These 14 papers
represent a diverse sample of topics, covering areas
of organic, inorganic, physical, analytical and com-
putational chemistry, and also areas where chemistry
overlaps with biology, environmental science, mate-
rials and mineral science, and education.

From these papers, we collected the title, section
headings, abstract and paragraphs, and discarded the
rest. To maximise the value of annotator effort, we
also automatically discarded the experimental sec-
tions, by looking for headers such as ‘Experimen-
tal’. This policy can be justified thus: In chemistry
papers, a section titled “Results and Discussion” car-
ries enough information about the experiments per-
formed to follow the argument of the paper, whereas
the experimental section carries precise details of the
protocols that are usually only of interest to people
intending to replicate or adapt the experiments per-
formed. It is increasingly common for chemistry pa-
pers not to contain an experimental section in the
paper proper, but to include one in the supporting
online information. Furthermore, experimental sec-

tions are often quite long and tedious to annotate,
and previous studies have shown that named-entity
recognition is easier on experimental sections too
(Townsend et al., 2005).

A few experimental sections (or parts thereof)
were not automatically detected, and instead were
removed by hand.

3.4 Procedure

The papers were hand-annotated using our in-house
annotation software. This software displays the text
so as to preserve aspects of the style of the text such
as subscripts and superscripts, and allows the anno-
tators to freely select spans of text with character-
level precision—the text was not tokenised prior to
annotation. Spans were not allowed to overlap or to
nest. Each selected span was assigned to exactly one
of the five available classes.

During annotation the subjects were allowed to
refer to the guidelines (explained in the previous sec-
tion), to reference sources such as PubChem and
Wikipedia, and to use their domain knowledge as
chemists. They were not allowed to confer with
anyone over the annotation, nor to refer to texts an-
notated during development of the guidelines. The
training of subject C by A was completed prior to A
annotating the papers involved in the exercise.

3.5 Evaluation Methodology

Inter-annotator agreement was measured pairwise,
using the

�
score. To calculate this, all of the ex-

act matches were found and counted, and all of the
entities annotated by one annotator but not the other
(and vice versa) were counted. For an exact match,
the left boundary, right boundary and type of the an-
notation had to match entirely. Thus, if one anno-
tator had annotated ‘hexane–ethyl acetate’ as a sin-
gle entity, and the other had annotated it as ‘hexane’
and ‘ethyl acetate’, then that would count as three
cases of disagreement and no cases of agreement.
We use the

�
score as it is a standard measure in the

domain—however, as a measure it has weaknesses
which will be discussed in the next subsection.

Given the character-level nature of the annotation
task, and that the papers were not tokenised, the task
cannot sensibly be cast as a classification problem,
and so we have not calculated any kappa scores.
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Overall results were calculated using two meth-
ods. The first method was to calculate the total lev-
els of agreement and disagreement across the whole
corpus, and to calculate a total

�
score based on that.

The second method was to calculate
�

scores for in-
dividual papers (removing a single paper that con-
tained two named entities—neither of which were
spotted by subject B—as an outlier), and to calculate
an unweighted mean, standard deviation and 95%
confidence intervals based on those scores.

3.6 Results and Discussion

Subjects
�

(corpus)
�

(average) std. dev.
A–B 92.8% 92.9%

�
3.4% 6.2%

A–C 90.0% 91.4%
�

3.1% 5.7%
B–C 86.1% 87.6%

�
3.1% 5.7%

Table 2: Inter-annotator agreement results.
�

values
are 95% confidence intervals.

The results of the analysis are shown in Table 2.
The whole-corpus

�
scores suggest that high levels

of agreement (93%) are possible. This is equivalent
to or better than quoted values for biomedical inter-
annotator agreement. However, the poorer agree-
ments involving C would suggest that some of this is
due to some extra information being communicated
during the development of the guidelines.

A closer analysis shows that this is not the case. A
single paper, containing a large number of entities, is
notable as a major source of disagreement between
A and C, and B and C, but not A and B. Looking
at the annotations themselves, the paper contained
many repetitions of the difficult entity ‘Zn �

�
–Tris’,

and also of similar entities. If the offending paper is
removed from consideration, the agreement between
A and C exceeds the agreement between A and B.

This analysis is confirmed using the per-paper
�

scores. Two-tailed, pairwise t-tests (excluding the
outlier paper) showed that the difference in mean

�

scores between the A–B and A–C agreements was
not statistically significant at the 0.05 significance
level; however, the differences between B–C and A–
B, and between B–C and A–C were.

A breakdown of the inter-annotator agreements
by type is shown in Table 3. CM and RN, at least,
seem to be reliably annotated. The other classes are
less easy to assess, due to their rarity, both in terms

Type
�

Number
CM 93% 2751
RN 94% 79
CJ 56% 20
ASE 96% 25
CPR 77% 10

Table 3: Inter-annotator agreement, by type.
�

scores are corpus totals, between Subjects A and C.
The number is the number of entities of that class
found by Subject A.

of their total occurrence in the corpus and the num-
ber of papers that contain them.

We speculate that the poorer B–C agreement may
be due to differing error rates in the annotation. In
many cases, it was clear from the corpus that errors
were made due to failing to spot relevant entities, or
by failing to look up difficult cases in the guidelines.
Although it is not possible to make a formal analy-
sis of this, we suspect that A made fewer errors, due
to a greater familiarity with the task and the guide-
lines. This is supported by the results, as more er-
rors would be involved in the B–C comparison than
in comparisons involving A, leading to higher levels
of disagreement.

We have also examined the types of disagree-
ments made. There were very few cases where two
annotators had annotated an entity with the same
start and end point, but a different type; there were
2 cases of this between A and C, and 3 cases in each
of the other two comparisons. All of these were con-
fusions between CM and CJ.

In the A–B comparison, there were 415 entities
that were annotated by either A or B that did not
have a corresponding exact match. 183 (44%) of
those were simple cases where the two annotators
did not agree as to whether the entity should be
marked up or not (i.e. the other annotator had not
placed any entity wholly or partially within that
span). For example, some annotators failed to spot
instances of ‘water’, or disagreed over whether ‘fat’
(as a synonym for ‘lipid’) was to be marked up.

The remainder of those disagreements are due
to disagreements of class, of where the boundaries
should be, of how many entities there should be in
a given span, and combinations of the above. In all
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of these cases, the fact that the annotators produce at
least one entity each for a given case means that dis-
agreements of this type are penalised harshly, and
therefore are given disproportionate weight. How-
ever, it is also likely that disagreements over whether
to mark an entity up are more likely to represent a
simple mistake than a disagreement over how to in-
terpret the guidelines; it is easy to miss an entity that
should be marked up when scanning the text.

A particularly interesting class of disagreement
concerns whether a span of text should be anno-
tated as one entity or two. For example, ‘Zn �

�
–Tris’

could be marked up as a single entity, or as ‘Zn �
�

’
and ‘Tris’. We looked for cases where one annota-
tor had a single entity, the left edge of which cor-
responded to the left edge of an entity annotated by
the other annotator, and the right edge corresponded
to the right edge of a different entity. We found 43
cases of this. As in each of these cases, at least three
entities are involved, this pattern accounts for at least
30% of the inter-annotator disagreement. Only 17 of
these cases contained whitespace—in the rest of the
cases, hyphens, dashes or slashes were involved.

4 Analysis of the Corpus

To generate a larger corpus, a further two batches of
papers were selected and preprocessed in the manner
described for the inter-annotator agreement study
and annotated by Subject A. These were combined
with the annotations made by Subject A during the
agreement study, to produce a corpus of 42 papers.

Type Entities Papers
CM 6865 94.1% 42 100%
RN 288 4.0% 23 55%
CJ 60 0.8% 20 48%
ASE 31 0.4% 5 12%
CPR 53 0.7% 9 21%

Table 4: Occurrence of entities in the corpus, and
numbers of papers containing at least one entity of a
type.

From Table 4 it is clear that CM is by far the most
common type of named entity in the corpus. Obser-
vation of the corpus shows that RN is common in
certain genres of paper (for example organic synthe-
sis papers), and generally absent from other genres.

ASE, too, is a specialised category, and did not occur
much in this corpus.

A closer examination of CM showed more than
90% of these to contain no whitespace. However,
this is not to say that there are not significant num-
bers of multi-token entities. The difficulty of to-
kenising the corpus is illustrated by the fact that
1114 CM entities contained hyphens or dashes, and
388 CM entities were adjacent to hyphens or dashes
in the corpus. This means that any named entity
recogniser will have to have a specialised tokeniser,
or be good at handling multi-token entities.

Tokenising the CM entities on whitespace and
normalising their case revealed 1579 distinct
words—of these, 1364 only occurred in one paper.
There were 4301 occurrences of these words (out of
a total of 7626). Whereas the difficulties found in
gene/protein NER with complex multiword entities
and polysemous words are less likely to be a prob-
lem here, the problems with tokenisation and large
numbers of unknown words remain just as pressing.

As with biomedical text (Yeh et al., 2005), cases
of conjunctive and disjunctive nomenclature, such
as ‘benzoic and thiophenic acids’ and ‘bromo- or
chlorobenzene’ exist in the corpus. However, these
only accounted for 27 CM entities.

5 Named-Entity Recognition

To establish some baseline measures of perfor-
mance, we applied the named-entity modules from
the toolkit LingPipe,4 which has been success-
fully applied to NER of D. melanogaster genes
(e.g. by Vlachos and Gasperin (2006)). Ling-
Pipe uses a first-order HMM, using an enriched
tagset that marks not only the positions of the
named entities, but the tokens in front of and
behind them. Two different strategies are em-
ployed for handling unknown tokens. The
first (the TokenShapeChunker) replaces un-
known or rare tokens with a morphologically-
based classification. The second, newer module
(the CharLmHmmChunker) estimates the prob-
ability of an observed word given a tag us-
ing language models based on character-level � -
grams. The LingPipe developers suggest that the
TokenShapeChunker typically outperforms the

4http://www.alias-i.com/lingpipe/
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CharLmHmmChunker. However, the more so-
phisticated handling of unknown words by the
CharLmHmmChunker suggests that it might be a
good fit to the domain.

As well as examining the performance of Ling-
Pipe out of the box, we were also able to make some
customisations. We have a custom tokeniser, con-
taining several adaptations to chemical text. For ex-
ample, our tokeniser will only remove brackets from
the front and back of tokens, and only if that would
not cause the brackets within the token to become
unbalanced. For example, no brackets would be re-
moved from ‘(R)-acetoin’. Likewise, it will only
tokenise on a hyphen if the hyphen is surrounded
by two lower-case letters on either side (and if the
letters to the left are not common prehyphen com-
ponents of chemical names), or if the string to the
right has been seen in the training data to be hy-
phenated with a chemical name (e.g. ‘derived’ in
‘benzene-derived’). By contrast, the default Ling-
Pipe tokeniser is much more aggressive, and will to-
kenise on hyphens and brackets wherever they occur.

The CharLmHmmChunker’s language models
can also be fed dictionaries as additional training
data—we have experimented with using a list of
chemical names derived from ChEBI (de Matos et
al., 2006), and a list of chemical elements. We have
also made an extension to LingPipe’s token classi-
fier, which adds classification based on chemically-
relevant suffixes (e.g. -yl, -ate, -ic, -ase, -lysis), and
membership in the aforementioned chemical lists, or
in a standard English dictionary.

We analysed the performance of the different
LingPipe configurations by 3-fold cross-validation,
using the 42-paper corpus described in the previous
section. In each fold, 28 whole papers were used as
training data, holding out the other 14 as test data.
The results are shown in Table 5.

From Table 5, we can see that the character � -
gram language models offer clear advantages over
the older techniques, especially when coupled to a
custom tokeniser (which gives a boost to

�
of over

7%), and trained with additional chemical names.
The usefulness of character-based � -grams has also
been demonstrated elsewhere (Wilbur et al., 1999;
Vasserman, 2004; Townsend et al., 2005). Their use
here in an HMM is particularly apt, as it allows the
token-internal features in the language model to be

Configuration
� � �

TokenShape 67.0% 52.9% 59.1%
+ � 71.2% 62.3% 66.5%
+ � 67.4% 52.5% 59.0%
+ � + � 73.3% 62.5% 67.4%
CharLm 62.7% 63.4% 63.1%
+ � 59.8% 68.8% 64.0%
+ � 71.1% 70.0% 70.5%
+ � + � 75.3% 73.5% 74.4%

Table 5: LingPipe performance using different con-
figurations. � = custom token classifier, � = chemical
name lists, � = custom tokeniser

combined with the token context.
The impact of custom tokenisation upon

the older TokenShapeChunker is less dra-
matic. It is possible that tokens that contain
hyphens, brackets and other special characters are
more likely to be unknown or rare tokens—the
TokenShapeChunker has previously been
reported to make most of its mistakes on these
(Vlachos and Gasperin, 2006), so tokenising them
is likely to make less of an impact. It is also
possible that chemical names are more distinctive
as a string of subtokens rather than as one large
token—this may offset the loss in accuracy from
getting the start and end positions wrong. The
CharLmHmmChunker already has a mecha-
nism for spotting distinctive substrings such as
‘N,N’-’ and ‘-3-’, and so the case for having long,
well-formed tokens becomes much less equivocal.

It is also notable that improvements in tokenisa-
tion are synergistic with other improvements—the
advantage of using the CharLmHmmChunker is
much more apparent when the custom tokeniser is
used, as is the advantage of using word lists as addi-
tional training data. It is notable that for the unmod-
ified TokenShapeChunker, using the custom to-
keniser actually harms performance.

6 Conclusion

We have produced annotation guidelines that enable
the annotation of chemicals and related entities in
scientific texts in a highly consistent manner. We
have annotated a corpus using these guidelines, an
analysis of which, and the results of using an off-
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the-shelf NER toolkit, show that finding good ap-
proaches to tokenisation and the handling of un-
known words is critical in the recognition of these
entities. The corpus and guidelines are available by
contacting the first author.
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