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Abstract

This paper describes an experiment that
uses translation equivalents derived from
parallel corpora to determine sense
distinctions that can be used for automatic
sense-tagging and other disambiguation
tasks. Our results show that sense
distinctions derived from cross-lingual
information are at least as reliable as those
made by human annotators. Because our
approach is fully automated through all its
steps, it could provide means to obtain
large samples of “sense-tagged” data
without the high cost of human
annotation.

1 Introduction

It is well known that the most nagging issue for
word sense disambiguation (WSD) is the definition
of just what a word sense is. At its base, the
problem is a philosophical and linguistic one that is
far from being resolved. However, work in
automated language processing has led to efforts to
find practical means to distinguish word senses, at
least to the degree that they are useful for natural
language processing tasks such as summarization,
document retrieval, and machine translation.
Resnik and Yarowsky (1997) suggest that for the
purposes of WSD, the different senses of a word
could be determined by considering only sense
distinctions that are lexicalized cross-linguistically.
In particular, they propose that some set of target
languages be identified, and that the sense
distinctions to be considered for language
processing applications and evaluation be restricted

to those that are realized lexically in some
minimum subset of those languages. This idea
would seem to provide an answer, at least in part,
to the problem of determining different senses of a
word: intuitively, one assumes that if another
language lexicalizes a word in two or more ways,
there must be a conceptual motivation. If we look
at enough languages, we would be likely to find the
significant lexical differences that delimit different
senses of a word.
Several studies have used parallel texts for WSD
(e.g., Gale et al., 1993; Dagan et al., 1991; Dagan
and Itai, 1994) as well as to define semantic
properties of and relations among lexemes (Dyvik,
1998). More recently, two studies have examined
the use of cross-lingual lexicalization as a criterion
for validating sense distinctions: Ide (1999) used
translation equivalents derived from aligned
versions of Orwell’s Nineteen Eighty-Four among
five languages from four different languages
families, while Resnik and Yarowsky (2000) used
translations generated by native speakers presented
with isolated sentences in English. In both of these
studies, translation information was used to
validate sense distinctions provided in lexicons
such as WordNet (Miller et al., 1990). Although
the results are promising, especially for coarse-
grained sense distinctions, they rest on the
acceptance of a previously established set of
senses. Given the substantial divergences among
sense distinctions in dictionaries and lexicons,
together with the ongoing debate within the WSD
community concerning which sense distinctions, if
any, are appropriate for language processing
applications, fitting cross-linguistic information to
pre-established sense inventories may not be the
optimal approach.
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This paper builds on previously reported work (Ide
et al., 2001) that uses translation equivalents
derived from a parallel corpus to determine sense
distinctions that can be used to automatically
sense-tag the data. Our results show that sense
distinctions derived from cross-lingual information
are at least as reliable as those made by human
annotators. Our approach therefore provides a
promising means to automatically identify sense
distinctions.

2 Methodology

We conducted a study using parallel, aligned
versions of George Orwell's Nineteen Eighty-Four
(Erjavec and Ide, 1998) in seven languages:
English, Romanian, Slovene, Czech, Bulgarian,
Estonian, and Hungarian. The study involves
languages from four language families (Germanic,
Romance, Slavic, and Finno-Ugric),  three
languages from the same family (Czech, Slovene
and Bulgarian), as well as two  non-Indo-European
languages (Estonian and Hungarian). Although
Nineteen Eighty-Four, (ca. 100,000 words),  is a
work of fiction, Orwell's prose is not highly
stylized and, as such, it provides a reasonable
sample of modern, ordinary language that is not
tied to a given topic or sub-domain (which is the
case for newspapers, technical reports, etc.).
Furthermore, the translations of the text seem to be
relatively faithful to the original: over 95% of the
sentence alignments in the full parallel corpus of
seven languages are one-to-one (Priest-Dorman, et
al., 1997).

2.1 Preliminary Experiment

We constructed a multilingual lexicon based on the
Orwell corpus, using a method outlined in Tufis
and Barbu (2001, 2002). The complete English
Orwell contains 7,069 different lemmas, while the
computed lexicon comprises 1,233 entries, out of
which 845 have (possibly multiple) translation
equivalents in all languages. We then conducted a
preliminary study using a subset of 33 nouns
covering a range of frequencies and degrees of
ambiguity (Ide, et al., 2001).
For each noun in the sample, we extracted all
sentences from the English Nineteen Eighty-Four
containing the lemma in question, together with the
parallel sentences from each of the six translations.
The aligned sentences were automatically scanned

to extract translation equivalents.1 A vector was
then created for each occurrence, representing all
possible lexical translations in the six parallel
versions: if a given word is used to translate that
occurrence, the vector contains a 1 in the
corresponding position, 0 otherwise. The vectors
for each ambiguous word were fed to an
agglomerative clustering algorithm (Stolcke,
1996), where the resulting clusters are taken to
represent different senses and sub-senses of the
word in question.
The clusters produced by the algorithm were
compared with sense assignments made by two
human annotators on the basis of WordNet 1.6.2 In
order to compare the algorithm results with the
annotators’ sense assignments, we normalized the
data as follows: for each annotator and the
algorithm, each of the 33 words was represented as
a vector of length n(n-1)/2, where n is the number
of occurrences of the word in the corpus. The
positions in the vector represent a “yes-no”
assignment for each pair of occurrences, indicating
whether or not they were judged to have the same
sense (the same WordNet sense for the annotators,
and the same cluster for the algorithm).
Representing the clustering algorithm results in this
form required some means to “flatten” the cluster
hierarchies, which typically extend to 5 or 6 levels,
to conform more closely to the completely flat
WordNet-based data. Therefore, clusters with a
minimum distance value (as assigned by the
clustering algorithm) at or below 1.7 were
combined, and each leaf of the resulting collapsed
tree was treated as a different sense. This yielded a
set of sense distinctions for each word roughly
similar in number to those assigned by the
annotators.3

The cluster output for glass  in Figure 1 is an
example of the results obtained from the clustering
algorithm. For clarity, the occurrences have been
manually labeled with WordNet 1.6 senses (Figure
2). The tree shows that the algorithm correctly

                                                            
1 Sentences in which more than one translation equivalent
appears were eliminated (cca. 5% of the translations).
2 Originally, the annotators attempted to group occurrences
without reference to an externally defined sense set, but this
proved to be inordinately difficult and produced highly
variable results and was eventually abandoned.
3 We used the number of senses annotators assigned rather
than the number of WordNet senses as a guide to determine
the minimum distance cutoff, because many WordNet senses
are not represented in the corpus.



grouped occurrences corresponding to WordNet
sense 1 (a solid material) in one of the two main
branches, and those corresponding to sense 2
(drinking vessel) in the other.  The top group is
further divided into two sub-clusters, the lower of
which refer to a looking glass and a magnifying
glass, respectively. While this is a particularly clear
example of good results from the clustering
algorithm, results for other words are, for the most
part, similarly reasonable.

Figure 1 : Output of the clustering algorithm

1. a brittle transparent solid with
irregular atomic structure

2. a glass container for holding liquids
while drinking

3. the quantity a glass will hold
4. a small refracting telescope
5. a mirror; usually a ladies' dressing

mirror
6. glassware collectively; "She collected

old glass"

Figure 2 : WordNet 1.6 senses for glass (noun)

The results of the first experiment are summarized
in Table 1, which shows the percentage of
agreement between the cluster algorithm and each

annotator, between the two annotators, and for the
algorithm and both annotators taken together.4 The
percentages are similar to those reported in earlier
work; for example, Ng et al. (1999) achieved a raw
percentage score of 58% agreement among
annotators tagging nouns with WordNet 1.6 senses.

Cluster/Annotator 1 66.7%
Cluster/Annotator 2 63.6%
Annotator 1/Annotator 2 76.3%
Cluster/Annotator 1/ Annotator 2 53.4%

Table 1 : Levels of agreement

2.2 Second experiment

Comparison of sense differentiation achieved using
translation equivalents, as determined by the
clustering algorithm, with those assigned by human
annotators suggests that use of translation
equivalents for word sense tagging and
disambiguation is worth pursuing. Agreement
levels are comparable to (and in some cases higher
than) those obtained in earlier studies tagging with
WordNet senses. Furthermore, the pairwise
difference in agreement between the human
annotators and the annotators and the clustering
algorithm is only 10-13%, which is also similar to
scores obtained in other studies.
In the second phase, the experiment was broadened
to include 76 nouns from the multi-lingual lexicon,
including words with varying ambiguity (the range
in number of WordNet senses is 2 to 29, average
7.09) and semantic characteristics (e.g., abstract vs.
concrete: “thought”, “stuff”, “meaning”, “feeling”
vs. “hand”, “boot”, “glass”, “girl”, etc.). We chose
nouns that occur a minimum of 10 times in the
corpus, have no undetermined translations and at
least five different translations in the six non-
English languages, and have the log likelihood
score of at least 18; that is:

LL(TT, TS)  = Â Â
= =
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log  ≥ 18

where nij stands for the number of times TT and TS

have been seen together in aligned sentences, ni*

and n*j stand for the number occurrences of TT and
TS, respectively, and n** represents the total

                                                            
4 We computed raw percentages only; common measures of
annotator agreement such as the Kappa statistic (Carletta,
1996) proved to be inappropriate for our two-category (“yes-
no”) classification scheme.

                _____|-> (1)
         |-----|     |-> (1)
         |     |_____|---> (1)
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    |    |-----|   |   |-| |-> (1)
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 |      |---> (2)
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                   |----| |-> (2)
                               |-> (2)



number of potential translation equivalents in the
parallel corpus. The LL score is set at a maximum
value to ensure high precision for the extracted
translation equivalents, which minimizes sense
clustering errors due to incorrect word alignment.
Table 2 summarizes the data.

No. of words 76
No. of example sentences 2399
Average examples/word 32
No. of senses (annotator 1) 241
No. of senses (annotator 2) 280
No. of senses (annotator 3) 213
No. of senses (annotator 4) 232
No. of senses (all annotators) 345
Average senses per word 4.53
Percentage of annotator agreement:

Full agreement (4/4) 54.27
75% agreement (3/4) 28.13
50% agreement (2/4) 16.92

No agreement 0.66

Table 2 : Summary of the data

In this second experiment, we increased the
number of annotators to four. The results of the
clustering algorithm and the sense assignments
made by the human annotators were normalized
differently than in the earlier experiment, by
ignoring sense numbers and interpreting the
annotators’ sense assignments as clusters only. To
see why this was necessary, consider the following
set of sense assignments for the seven occurrences
of “youth” in Nineteen Eighty-Four:

OCC 1 2 3 4 5 6 7

Ann1 3 1 6 3 6 3 1

Ann2 2 1 4 2 6 2 1

Agreement is 43%; however, both annotators
classify occurrences 1, 4, and 6  as having the same
sense, although each assigned a different sense
number to the group. If we ignore sense numbers
and consider only the annotators’ “clusters”, the
agreement rate is much higher,5 and the data is
more comparable to that obtained from the cluster
algorithm.
We also addressed the issue of the appropriate
point at which to cut off the clustering by the
algorithm. Our use of a pre-defined minimum
                                                            
5 In fact, the only remaining disagreement is that Annotator 1
assigns occurrences 3 and 5 together, whereas Annotator 2
assigns a different sense to occurrence 3—in effect, Annotator
2 makes a finer distinction than Annotator 1 between
occurrences 3 and 5.

distance value to determine the number of clusters
(senses) in the earlier experiment  yielded varying
results for different words (especially words with
significantly different numbers of translation
equivalents) and we sought a more principled
means to determine the cut-off value. The
clustering algorithm was therefore modified to
compute the correct number of clusters
automatically by halting the clustering process
when the number of clusters reached a value
similar to the average number obtained by the
annotators.6 As criteria, we used the minimum
distance between existing clusters at each iteration,
which determines the two clusters to be joined,
where minimum distance is computed between two
vectors v1, v2 length n as:

† 

(v1(i) - v2(i))2

i=1

n

Â

Best results were obtained when the clustering was
stopped at the point where:

(dist(k)-dist(k+1))/dist(k+1) < 0.12

where dist(k) is the minimal distance between two
clusters at the kth iteration step.
We defined a “gold standard” annotation by taking
the majority vote of the four annotators (in case of
ties, the annotator closest to the majority vote in
the greatest number of cases was considered to be
right). Using this heuristic, the clustering algorithm
assigned the same number of senses as the gold
standard for 41 words. However, overall agreement
was much worse (67.9%) than when the number of
clusters was pre-specified. The vast majority of
clustering errors occurred when sense distributions
are skewed; we therefore added a post-processing
phase in which the smallest clusters are eliminated
and their members included in the largest cluster
when the number of occurrences in the largest
cluster is at least ten times that of any other
cluster.7

With this new heuristic, the algorithm produced the
same number of clusters as the gold standard for
only 15 words, but overall agreement reached
74.6%. Mismatching clusters typically included

                                                            
6 In principle, the upper limit for the number of senses for a
word is the number of senses in WordNet 1.6; however, there
was no case in which all WordNet senses appeared in the text.
7 The factor of 10 is a conservative threshold; additional
experiments might yield evidence for a lower value.



only one element. There were only five words for
which a difference in the  number of clusters
assigned by the gold standard vs. the algorithm
significantly contributed to the 2.7% depreciation
in agreement.
We also experimented with eliminating the data for
“non-contributing” languages  (i.e., languages for
which there is only one translation for the target
word); this was ultimately abandoned because it
worsened results by amplifying the effect of
synonymous translations in other languages.
Finally, we compared the use of weighted vs.
unweighted clustering algorithms (see, e.g.,
Yarowsky and Florian, 1999) and determined that
results were improved using weighted clustering.
The clusters produced by each pair of classifiers
(human or machine) were mapped for maximum
overlap; differences were considered as
divergences. The agreement between two different
classifications was computed as the number of
common occurrences in the corresponding clusters
of the two classifications divided by the total
number of the occurrences of the target word. For
example, the word movement occurs 40 times in
the corpus; both the “gold standard” and the
algorithm identified four clusters, but the
distribution of the 40 occurrences was substantially
different, as summarized in Table 3.  Thirty-four of
the 40 occurrences appear in the clusters common
to the two classifications; therefore, the agreement
rate is 85%.

CLUSTER 1 2 3 4
Gold standard 28 6 3 3
Algorithm 25 7 6 2
Intersection 24 6 3 1

Table 3 : Gold standard vs. algorithm clustering for
movement

2.3 Results

The results of our second experiment are
summarized in Table 4, which gives the agreement
rate between baseline clustering (B), in which it is
assumed all occurrences are labeled with the same
sense; each pair of human annotators (1-4); the
gold standard (G); and the clustering algorithm
(A). The table shows that agreement rates among
the human annotators, as compared to those
between the algorithm and all but one annotator,
are not significantly different, and that the

algorithm’s highest level of agreement is with the
baseline. This is not surprising because of the
second heuristic used. However, the second best
agreement rate for the algorithm is with the gold
standard, which suggests that sense distinctions
determined using the algorithm are almost as
reliable as sense distinctions determined manually.
The agreement of the algorithm with the gold
standard falls slightly below that of the human
annotators, but is still well within the range of
acceptability. Also, given that the gold standard
was computed on the basis of the human
annotations, it is understandable that these
annotations do better than the algorithm.

1 2 3 4 G A
B 71.1 65.1 76.3 74.1 75.5 81.5
1 78.1 75.6 83.1 88.6 74.4
2 71.3 75.9 82.5 66.9
3 77.3 82.1 77.1
4 90.4 75.9
G 77.3

Table 4 Agreement rates among baseline, the four
annotators, gold standard, and the algorithm

3 Discussion and Further Work

Our results show that sense distinctions based on
translation variants from parallel corpora are
similar to those obtained from human annotators,
which suggests several potential applications.
Because our approach is fully automated through
all its steps, it could be used to automatically
obtain large samples of “sense-differentiated” data
without the high cost of human annotation.
Although our method does not choose sense
assignments from a pre-defined list, most language
processing applications (e.g. information retrieval)
do not require this knowledge; they need only the
information that different occurrences of a given
word are used in the same or a different sense.
A by-product of applying our method is that once
words in a text in one language are tagged using
this method, different senses of the corresponding
translations in the parallel texts are also identified,
potentially providing a source of information for
use in other language processing tasks and for
building resources in the parallel languages (e.g.,
WordNets for the Eastern European languages in
our study).  In addition, if different senses of target



words are identified in parallel texts, contextual
information for different senses of a word can be
gathered for use in disambiguating other, unrelated
texts. The greatest obstacle to application of this
approach is, obviously, the lack of parallel corpora:
existing freely available parallel corpora including
several languages are typically small (e.g., the
Orwell), domain dependent (e.g. the MULTEXT
Journal of the Commission (JOC) corpus; Ide and
Véronis, 1994), and/or represent highly stylized
language (e.g. the Bible; Resnik et al., 1999).
Appropriate parallel data including Asian
languages  is virtually non-existent. Given that our
method applies only to words for which different
senses are lexicalized differently in at least one
other language, its broad application depends on
the future availability of large-scale parallel
corpora including a variety of language types.
Many studies have pointed out that coarser-grained
sense distinctions can be assigned more reliably by
human annotators than finer distinctions such as
those in WordNet. In our study, the granularity of
the sense distinctions was largely ignored, except
insofar as we attempted to cut off the number of
clusters produced by the algorithm at a value
similar to the number identified by the annotators.
The sense distinctions derived from the clustering
algorithm are hierarchical, often identifying four or
five levels of refinement, whereas the WordNet
sense distinctions are organized as a flat list with
no indication of their degree of relatedness. Our
attempt to flatten the cluster data in fact loses much
information about the relatedness of senses.8 As a
result, both annotators and the clustering algorithm
are penalized as much for failing to distinguish
fine-grained as coarse-grained distinctions. We are
currently exploring two possible sources of
information about sense relatedness: the output of
the clustering algorithm itself, and WordNet
hypernyms, which may not only improve but also
broaden the applicability of our method.

                                                            
8 Interestingly, the clustering for “glass” in Figure 1 reveals
additional sub-groupings that are not distinguished in
WordNet:  the top sub-group of the top cluster includes
occurrences that deal with some physical aspect of the material
(“texture of”, “surface of”, “rainwatery”, “soft”, etc.). In the
lower cluster, the two main sub-groups distinguish a (drinking)
glass as a manipulatable object (by washing, holding, on a
shelf, etc.) from its sense as a vessel (mainly used as the object
of “pour into”, “fill”, “take/pick up”, etc. or modified by
“empty”, “of gin”, etc.).

We note in our data that although it is not
statistically significant, there is some correlation (-
.51) between the number of WordNet senses for a
word and overall agreement levels. The lowest
overall agreement levels were for “line” (29
senses), “step” (10), position (15), “place” (17),
and “corner” (11). Perfect agreement was achieved
for several words with under 5 senses, e.g., “hair”
(5), “morning” (4), “sister” (4), “tree” (2), and
“waist” (2)—all of which were judged by both the
annotators and the algorithm to occur in only one
sense in the text. On the other hand, agreement
levels for some words with under five WordNet
senses had low agreement: e.g., “rubbish” (2),
“rhyme” (2), “destruction” (3), and “belief” (3).
Because both the algorithm (which based
distinctions on translations) and the human
annotators (who used WordNet senses) had low
agreement in these cases, the WordNet sense
distinctions may be overly fine-grained and,
possibly, irrelevant to many language processing
tasks.
We continue to explore the viability of our method
to automatically determine sense distinctions
comparable to those achieved by human
annotators. We are currently exploring methods to
refine the clustering results as well as their
comparison to results obtained from human
annotators (e.g., the Gini Index  [Boley, et al.,
1999]).

4 Conclusion

The results reported here represent a first step in
determining the degree to which automated
clustering based on translation equivalents can be
used to differentiate word senses.  Our work so far
indicates that the method is promising and could
provide a significant means to automatically
acquire sense-differentiated data in multiple
languages. Our current results suggest that coarse-
grained agreement is the best that can be expected
from humans, and that our method is capable of
duplicating sense differentiation at this level.

5 Acknowledgements

Our thanks go to Arianna Schlegel, Christine
Perpetua, and Lindsay Schulz who annotated the
data, and to Ion Radu who modified the clustering
algorithm. We would also like to thank the



anonymous reviewers for their comments and
suggestions. All errors, of course, remain our own.

6 References

Boley D., Gini, M, Gross, R., Han, S.,.
Hastings, K and Karypis, G., Kumar, V.,
Mobasher, B, Moore, J. (1999) Partitioning-Based
Clustering for Web Document Categorization.
Decision Support Systems, 27:3, 329-341.

Carletta, J. (1996). Assessing Agreement on
Classification Tasks: The Kappa Statistic.
Computational Linguistics, 22:2, 249-254.

Dagan, I. and Itai, A. (1994). Word sense
disambiguation using a second language
monolingual corpus. Computational Linguistics,
20:4, 563-596.

Dagan, I., Itai, A., and Schwall, U. (1991). Two
languages are more informative than one.
Proceedings of the 29th Annual Meeting of the
ACL, 18-21 Berkeley, California, 130-137.

Dyvik, H. (1998). Translations as Semantic
Mirrors. Proceedings of Workshop Multilinguality
in the Lexicon II, ECAI 98, Brighton, UK, 24-44.

Erjavec, T. and Ide, N. (1998). The
MULTEXT-EAST Corpus. Proceedings of the
First International Conference on Language
Resources and Evaluation, Granada, 971-74.

Gale, W. A., Church, K. W. and Yarowsky, D.
(1993). A method for disambiguating word senses
in a large corpus. Computers and the Humanities,
26, 415-439.

Ide, N. (1999). Cross-lingual sense
determination: Can it work? Computers and the
Humanities, 34:1-2,  223-34.

Ide, N., Erjavec, T., and Tufis, D. (2001).
Automatic sense tagging using parallel corpora.
Proceedings of the Sixth Natural Language
Processing Pacific Rim Symposium, Tokyo,  83-89.

Ide, N., Véronis, J. (1994). Multext
(Multilingual Tools and Corpora). Proceedings of
the 14th International Conference on
Computational Linguistics, COLING’94, Kyoto,
90-96.

Miller, G. A., Beckwith, R. T. Fellbaum, C. D.,
Gross, D. and Miller, K. J. (1990). WordNet: An
on-line lexical database. International Journal of
Lexicography, 3:4, 235-244.

Ng, H. T., Lim, C. Y., Foo, S. K. (1999). A
Case Study on Inter-Annotator Agreement for
Word Sense Disambiguation. Proceedings of the

ACL SIGLEX Workshop: Standardizing Lexical
Resources, College Park, MD, USA, 9-13.

Priest-Dorman, G.; Erjavec, T.; Ide, N. and
Petkevic, V. (1997). Corpus Markup. COP Project
106 MULTEXT-East D2.3 F.

Resnik, P. and Yarowsky, D. (2000).
Distinguishing systems and distinguishing senses:
New evaluation methods for word sense
disambiguation. Journal of Natural Language
Engineering, 5(2): 113-133.

Resnik, P., Broman Olsen, M., Diab, M. (1999).
Creating a Parallel Corpus from the Book of 2000
Tongues. Computers and the Humanities, 33:1-2.
129-153.

Resnik, Philip and Yarowsky, David (1997). A
perspective on word sense disambiguation methods
and their evaluation. ACL-SIGLEX Workshop
Tagging Text with Lexical Semantics: Why, What,
and How? Washington, D.C., 79-86.

Stolcke, Andreas (1996) Cluster 2.9.
http://www.icsi.berkeley.edu/ftp/global/pub/ai/
stolcke/software/cluster-2.9.tar.Z.

Tufis, D., Barbu, A.-M. (2001) Automatic
Construction of Translation Lexicons. In V.Kluew,
C. D'Attellis N. Mastorakis (eds.) Advances in
Automation, Multimedia and Modern Computer
Science, WSES Press, 156-172

Tufis, D., Barbu, A.-M. (2002), Revealing
translators knowledge: statistical methods in
constructing practical multilingual lexicons for
language and speech processing. International
Journal of Speech Technology (to appear).

Yarowsky, D., Florian. R. (1999). Taking the
load off the conference chairs: towards a digital
paper-routing assistant. Proceedings of the Joint
SIGDAT Conference on Empirical Methods in NLP
and Very Large Corpora, 220-230.


