
LR Pa rse rs
For Natura l Languages ,

M a s a r u Tomi ta
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

MLR, an extended LR parser, is introduced, and its
application to natural language parsing is discussed.
An LR parser is a ~;hift-reduce parser which is
doterministically guided by a parsing table. A parsing
table can be obtained automatically from a context-
free phrase structure grammar. LR parsers cannot
manage antl)iguous grammars such as natural
language grammars, because their I)arsing tables
would have multiply-defined entries, which precludes
deterministic parsing. MLR, however, can handle
mulliply-defined entries, using a dynamic
programnting method. When an input sentence is
ambiguous, the MI.R parser produces all possible
parse trees witftoul parsing any part of the input
sentenc:e more than once in the same way, despite the
fact that the parser does not maintain a chart as in
chart par~ing. Our method also prnvkles an elegant
solution to the problem of multi-part-of-speech words
such as "that". The MLR parser and its parsing table
generator have been implemented at Carnegie-Mellon
University.

1 Introduction

LR parsers [I , 2] have been developed originally for
programming language of compilers. An LR parser is a shift-
reduce parser which is detenninistically guided by a par.~it~g table
indicating what action should be taken next. The parsing table
can be obtained automatically from a context-free phrase
structure grammar, using an algorithm first developed by

DeRemer [5, 6]. We do not describe the algorithm here, reffering
the render to Chapter 6 in Aho and UIIman [4]. The LR parsers
have seldom been used for Natural Language Processing
probably because:

1. It has been thought that natural languages are not
context-free, whereas LR parsers can deal only with
context-free languages.

2. Natural languages are ambiguous, while standard LR
parsers can not handle ambi~juous languages.

The recent l i terature[8] shows that the belief "natural
languages are not context- free" is not necessarily true, and there
is no reason for us to give up the context- freedom of natural
languages. We (to not discuss on this matter further, considering
the fact that even if natural languages are not context-free, a
fairly comprehensive grammar for a subset of natural language
suflicient for practical systems can be written in context. f ree
phrase structure. lhtJ.% our main concern is how to cope with the
ambiguity of natural languages, and this concern is addressed in
the fallowing section.

2 LR parsers and Ambiguous Grammars

If a given grammar is ambiguous? we cannot have a parsing
table in which ~ve~y entry is uniquely defined; at lea~t one entry of
it~ parsing table is inulliply defined. It has been thought that, for
LR pa~sers, nndtiple entries are fatal because they make
deterministic parsing no longer po~$ible.

Aho et. al. [3] and Shieber[121 coped with this ambiguity
problem by statically 3 selecting one desired action out of multiple
actions, and thus converting n=ulliply-defined entries into
uniquely-defined ones.With this approach, every input sentence
has no more than one parse tree. This fact is desirable for
progralnming languages.

For natural languages, however, it is sometimes necessary for a
parser to produce more than one parse tree. For example,
consider the following short story.

I saw the man with a telescope.
He should have bought it at the department store.

When the first sentence is read, there is absolutely no way to
resolve the ambiguity 4 at that time. The only action the system
can take is to produce two parse trees and store them
somewhere for later disambiguation.

In contrast with Aho et. al. and Shieber, our approach is to
extend LR parsers so that they can handle multiple entries and
produce more than one parse tree if needed. We call the
extended LR parsers MLR parsers.

ll'his rP.~i:i'¢l'Ctl was -~pon~oled by the Df.'ieose Advanced Research Projects
Agency (DOD), ARPA Older No. 3597, munitoled hy lhe Air Foi'r:e Avionics
Lot)oratory Under C, uolracl F3:)(~15 81 K-t539. The views and con,.;lusion$
conl,lii~cd i=1 lhi.~; (lo=;unlq;nt a~i.~ tho'.;e ()| tt1~.! ;iu|hor.~; alld should not be illlerpreted
as n:pre.-',enling the official p(':licie:;, c, ilher expressed or implied, of the Defense
Advanced Re,ql..';.trch Projects Ag4.tncy or the US Gow.~.rnnlent.

2A grammar is ambiQuous, if some input sentence can be parsed in more than
on~. W,gy,

3By t'~tatically", we mean the ~..:election is done at par.~ing table construction
time,

4"1" have the telescope, or "the man" has the telescope.

354

3 MLR Parsers
of different parses have in the chart parsing method [10, 11]. The
idea should be made clear by the following example.

An example grammar and its MLR parsing table produced by
the construction algorithm are shown in fig. 1 and 2, respectively.
The MLR parsing table construction algorithm is exactly the same
as the algorithm for LR parsers. Only the difference is that an
MLR parsing table may have multiple entries. Grammar symbols
starting with represent pre-terminals. "sh n" in the action
table (the left part of the table) indicates the action "shift one
word from input buffer onto the stack, and go to state n". "re n"
indicates the action "reduce constituents on the stack using rule
n". "acc" stands for tile action "accept", and blank spaces
represent "error". Goto table (the right part of the table) decides
to what state the parser should go a f te ra reduce action. The
exact definition and operation of LR parsers can be found in Aho
and Ulhnan [4].

We can see that there are two multiple entries ir~ the table; on
the rows of state t t and 12 at the column of " 'p rep" . As
mentioned above, once a parsing table has multiple entries,
deterministic parsing is no longer possible; some kind of non-
determinism is necessary. We .~hali see that our dynamic
programming approach, which is described below, is much more
efficient than conventional breath-first or depth-first search, and
makes MLR parsing feasible.

4 An Example

In this section, we demonstrate, step by step, how our MLR
parser processes the sentence:

I SAW A MAN WITH A TELESCOPE

using the grammar and the parsing table shown in fig t and 2.
This sentence is ambiguous, and the parser should accept the
sentence in two ways.

Until the system finds a multiple entry, it behaves in tile exact
same manner as a conventional LR parser, as shown in fig 3-a
below. The number on the top (ri.qhtmost) of the stack indicates
the current state. Initially, the current state is 0. Since the parser
is looking at the word "1", whose category is " *n" , the next action
"shift and goto state 4" is determined from the parsing table. "]he.
parser takes the word "1" away from the input buffer, and pushes
the preterminal " *n " onto tile stack. The next word the parser is
looking at is "SAW", whose category is " ' v " , and "reduce using
rule 3" is determined as the next action. After reducing, the
parser determines the current state, 2, by looking at the
intersection of the row of state 0 and the column of "NP °', and so
on.

Our approach is basically pseudo-parallelism (breath-first
search). When a process encounters a multiple entry with n
different actions, the process is split into n processes, and they
are executed individually and parallelly. Each process is
continued until either an "error" or an "accept" action is found.
The processes are, however, synchronized in the following way:
When a process "shifts" a word, it waits until all other processes
"shift" the word. Intuitively, all processes always look at the
same word. After all processes shift a word, the system may find
that two or more processes are in the ~lnle state; that is, some

processes have a common state number on the top of their
stacks. These processes would do the exactly same thing until
that common state number is popped from their stacks by some
"reduce" action. In our parser, this common part is processed
only once. As soon as two or more processes in a common state
are found, they are combined into one process. This combining
mechanism guarantees that any part of an input sentence is
parsed no more than once in the same manner." This makes the
parsing much more efficient than simple breath-first or depth-first
search. Our method has the same effect in terms of parsing
efficiency that posting and recognizing common subconstituents

STACK MrXT-ACI ION NEXT-WORD
.

0 sh 4 [

0 =n 4 re 3 SAW

0 NP Z sh 7 SAW
0 NP 2 " v 7 sh 3 A

0 NP 2 ev 7 =det. 3 sh IO MAN

0 NP 2 Ov 7 O¢let, 3 en tO re 4 WITH

0 NP 2 =v 7 NP tZ re 7, sh 6 WI [I I
. .: .

Fig 3oa

At this point, tile system finds a multiple entry with two different
actions, "reduce 7" and ".3hilt g". Both actions are processed in
parallel, as shown in fig 3-b.

S t a t e * d e t *n *v "prep $ NP PP VP S
.

sh3 sh4 2 t
sh6 acc 5

sh7 sh6 9 8
sht0

re3 re3 re3
re2 re2

sh3 sh4 11
sh3 sh4 12

0
1

. 2

(I) S --> NP VP 3
(2) S --> S PP 4
(3) NP - - > =n 5
(4) NP - - > * d e t *n 6
(5) NP - - > NP PP 7
(6) PP - - > =prep NP 8
(7) VP - - > "v NP 9

. 1 0

11
12

Fig 1

r e t t e l
re5 re5 re5
re4 re4 re4
re6 r e 6 , s h 6 re6 9

r e 7 , s h 6 re7 9

Fig 2

355

0 NP 2 VP 8 re t W[FII

0 NP 2 *v 1 HI) 12 *p rep 6 w a i t A

0 S [sh 6 WI[I I

0 NP 2 "v l NP 12 "prep 6 w a i t A

This process is also finished by the act ion "accept " . The
system has accepted the input sentence in both ways. It is
important to note that any part of the input sentence, including
the preposit ional phrase "WITH A TELESCOPE", is parsed only
once in the same way, without maintaining a chart.

0 S I * l) rep 6 sh 3 A

0 NP Z *v 7 NP t2 " p r e p 6 sh 3 A
.

Fig 3-b

Here, the system finds that both processes have the common
state number, 6, on the top of their slacks. It combines two
proces:;os into one, and operates as if there is only one process,
as shown in fig 3-c.

5 Another Example

Some English words belong to more than one gramil lat ical
category. When such a word is encountered, ti le MLR parsing
table can immediately tell which of its cutegor ies are legal and
which are not. When more than one of its categor ies are legal,
t i le parser behaves as if a multiple entry were encountered. The
idea should be 'made clear by the fol lowing example.

. e .

O S | III " p r e p 6 sh 3 A
0 HI' 2 "v 1 i'lP 12 4 v

0 S t " p r e p 13 " d e t 3 sh 10 TELESCOPE

0 MP 2 "v 7 NP t2 d#"

0 S I I " p r e p 6 " d o t 3 "n)0 re 4 $
0 NP 2 "v 7 NP t2 alP"

Consider the word " that" in the sentence:

That information is important is doubtful .

A ~3ample grammar and its parsing table are shown in Fig. 4 and 5,
respectively. Initially, the parser is at state O. The first word
" that" can be ei ther " " d e t " or " * tha t " , and the parsing table tells
us that both categor ies are legal. Thus, the parser processes "sh
5" and "sh 3" in parallel, as shown below.

0 S ! j "prop G ~IP t t re 6 $
0 NP 2 "v 7 NP 12 ~
.

STACK NEXI ACIION N[XI WORD
.

0 sh 5, sh 3 I 'ha t

Fig 3-c
The action " reduce 6" pops the common state number 6, and

the system can no longer operate the two processes as one. The
two processes are, again, operated in parallel, as shown in fig
3-d.

0 S I PP 5 re 2 $

0 NP 2 =v 7 NP 12 PP 9 re 5 $

0 S [accept
0 NP 2 *v 7 NP 12 re 7 $
.

Fig 3 -d

NOW, one of the two processes is f inished by the act ion
"accept" . The other process is still cont inued, as shown in fig
3-e.

.

0 NP 2 VP 8 re t $

0 S t accept

0 sh 5 F h a t

0 sh 3 T h a t

0 * d e t 5 sh 9 i n f o r m a t i o n

0 " t h a t 3 sh 4 i n f o r m a t i o n

0 * d e t 5 *n 9 re 2 i s

0 * t h a t 3 *n 4 re 3 i s

0 NP 2 sh 6 Is

0 = t h a t 3 NP 2 sh 6 is

Fig. 6 -a

At this point, the parser founds that both processes are in the
same state, namely state 2, and they are combined as one
process.

Fig 3-e

0

(1) S - - > NP VP 2
(2) NP - - > "det *n 3
(3) NP - - > "n 4
(4) NP - -) * t h a t S 5
(5) VP - - > "be "adj 6

. 7

8
9

Fig. 4 10

S t a t e * a d j " be " d e t *n * t h a t $ NP S VP
.

sh5 sh4 sh3 2 1
acc

sh6 7
sh5 sh4 sh3 2 8

r e3
sh9

sh lO
re1 re1
re4
re2
re5 re5

.

Fig. 5

356

00 *t at 3 NP G M P h q~ml~a '~P 2 sh 6 iS

0 NP ~ Z *he 6 sh 10 impor tan t
0 " t h a t 3 NP

0 N P h = m m m m ~ 2 "be 6 " . d j . t at 3 NP f tO re 5 1,
o

0 N P ~ 2 VP 7 re t |s
0 " t h a t 3 NP-
.

Fig. 6- b

The process is split into two processes again.

0 ~IP 2 VP 7 re I i$
0 * t h a t 3 NP 2 VP 7 re 1 1=1

0 5 1 #ERRORI t l
0 "thor 3 $ 8 re 4 is
.

Fig. 6 - ¢ •

One of two processes detects "error" and halts; only the other
process goes on.

0 NP 2 sh 6 t=
0 NP 2 *he 6 sh tO doubtful
0 ~JP Z "be 6 "adJ tO re 5 $
0 .P 2 vP 7 re 1 $
0 s I ace $
.

Fig. 6-d

Finally, the sentence has been parsed in only one way. We
emphasize again that, "in spite of pseudo-parallelism, each part of
the sentence was parsed only once in the same way.

6 C o n c l u d i n g R e m a r k s

The MLR parser and its parsing table generator have been
implemented at Computer Science Department, Carnegie.Mellon
University. The system is written in MACLISP and running on
Tops-20.

One good feature of an MLR parser (and of an LR parser) is
that, even if the parser is to run on a small computer, the
construction of the parsing table can be done on more powerful,
larger computers. Once a parsing table is constructed, the
execution time for parsing depends weakly on the number of
productions or symbols in a grammar. Also, in spite of pseudo.
parallelism, our MLR parsing is theoretically still deterministic.
This is because the number of processes in our pseudo.
parallelism never exceeds the number of states in the parsing
table.

One concern of our parser is whether the size of a parsing table
remains tractable as the size of a grammar grows. Fig. 6 shows
the relationship between the complexity of a grammar and its LR
parsing table (excerpt from Inoue [9]).

XPL EULER FORTRAN ALGOL60

T e r m i n a l s 47 74 63 66
N o n - t e r m i n a l s 51 45 77 99
P r o d u c t i ons 108 121 172 205

S t a t e s 180 t93 322 3 3 7
T a b l e S i z e (b y t e) 2041 2587 3662 4264

Fig. 6

Although the example grammars above are for programming
langauges, it seems that the size of a parsing table grows only in
proport ion to the size of its grammar and does not grow rapidly.
Therefore, there is a hope that our MLR parsers can manage
grammars with thousands of phrase structure rules, which would
be generated by rule-schema and meta-rules for natural language
in systems such as GPSG [7].

Acknowledgements
I would like to thank Takehiro Tokuda, Osamu

Watanabe, Jaime Carbonell and Herb Simon for
thoughtful comments on an earlier version of this
paper.

References
[1] Aho, A. V. and Ullman, J. D.

The Theory of Parsing, Translation and Compiling.
Prentice-Hall, Englewood Cliffs, N. J., 1972.

[2] AhO, A. V. and Johnson, S. C.
LR parsing.
ComPuting Surveys 6:2:99-124, 1974.

[3] Aho, A. V., Johnson, S. C. and UIIman, J. D.
Deterministic parsing of ambiguous grammars.
Comm. ACM 18:8:441-452, 1975.

[4] Aho, A. V. and UIIman, J. D.
Principles of Compiler Design.
Addison Wesley, 1977.

[5] Oeremer, F. L
Practical Translators for LR(k) Languages.
PhD thesis, MIT, 1969.

[6] DeRemer, F. L.
Simple LR(k) grammars.
Comm. ACM 14:7:453-460, 1971.

FI Gazdar, G.
Phrase Structure Grammar.
D. Reid, l , 1982, pages 131.186.

[8] G=zder, G.
Phrase Structure Grammars and Natural Language.
Proceedings of the Eighth International Joint Conference

on Artificial Intelligence v.1, August, 1983.
[9] Inoue, K. and Fujiwara, F,

On LLC(k) Parsing Method of LR(k) Grammars.
Journal of Inlormation Processing vol.6(no.4):pp.206-217,

1983.
[10] Kapisn, R. M.

A general syntactic processor.
Algorithmics Press, New York, 1973, pages 193.241.

[1~] Kay, M.
The MIND system.
Algorithmics Press, New York, 1973, pages 155-188.

[12] Shieber, S. M.
Sentence Disambiguation by a ShiR-Reduce Parsing

Technique.
Proceedings of the Eighth International Joint Conference

on Artificial Intelligence v.2, August, 1983.

357

