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Unsupervised Segmentation of Chinese Textby Use of Branching EntropyZhihui Jin and Kumiko Tanaka-IshiiGraduate School of Information Science and TechnologyUniversity of TokyoAbstractWe propose an unsupervised segmen-tation method based on an assumptionabout language data: that the increas-ing point of entropy of successive char-acters is the location of a word bound-ary. A large-scale experiment was con-ducted by using 200 MB of unseg-mented training data and 1 MB of testdata, and precision of 90% was attainedwith recall being around 80%. More-over, we found that the precision wasstable at around 90% independently ofthe learning data size.1 IntroductionThe theme of this paper is the following as-sumption:The uncertainty of tokens comingafter a sequence helps determinewhether a given position is at aboundary. (A)Intuitively, as illustrated in Figure 1, the vari-ety of successive tokens at each character in-side a word monotonically decreases accordingto the o�set length, because the longer the pre-ceding character n-gram, the longer the pre-ceding context and the more it restricts theappearance of possible next tokens. For ex-ample, it is easier to guess which charactercomes after \natura" than after \na". On theother hand, the uncertainty at the position ofa word border becomes greater, and the com-plexity increases, as the position is out of con-text. With the same example, it is di�cult toguess which character comes after \natural ".This suggests that a word border can be de-tected by focusing on the di�erentials of theuncertainty of branching.In this paper, we report our study on ap-plying this assumption to Chinese word seg-

Figure 1: Intuitive illustration of a variety ofsuccessive tokens and a word boundarymentation by formalizing the uncertainty ofsuccessive tokens via the branching entropy(which we mathematically de�ne in the nextsection). Our intention in this paper is aboveall to study the fundamental and scienti�c sta-tistical property underlying language data, sothat it can be applied to language engineering.The above assumption (A) dates back tothe fundamental work done by Harris (Harris,1955), where he says that when the numberof di�erent tokens coming after every pre�x ofa word marks the maximum value, then thelocation corresponds to the morpheme bound-ary. Recently, with the increasing availabil-ity of corpora, this property underlying lan-guage has been tested through segmentationinto words and morphemes. Kempe (Kempe,1999) reports a preliminary experiment to de-tect word borders in German and English textsby monitoring the entropy of successive char-acters for 4-grams. Also, the second authorof this paper (Tanaka-Ishii, 2005) have shownhow Japanese and Chinese can be segmentedinto words by formalizing the uncertainty withthe branching entropy. Even though the testdata was limited to a small amount in thiswork, the report suggested how assumption
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(A) holds better when each of the sequence el-ements forms a semantic unit. This motivatedour work to conduct a further, larger-scale testin the Chinese language, which is the only hu-man language consisting entirely of ideograms(i.e., semantic units). In this sense, the choiceof Chinese as the language in our work is es-sential.If the assumption holds well, the most im-portant and direct application is unsuper-vised text segmentation into words. Manyworks in unsupervised segmentation so farcould be interpreted as formulating assump-tion (A) in a similar sense where branch-ing stays low inside words but increasesat a word or morpheme border. None ofthese works, however, is directly based on(A), and they introduce other factors withintheir overall methodologies. Some works arebased on in-word branching frequencies for-mulated in an original evaluation function,as in (Ando and Lee, 2000) (boundary pre-cision=84.5%,recall=78.0%, tested on 12500Japanese ideogram words). Sun et al. (Sunet al., 1998) uses mutual information (bound-ary p=91.8%, no report for recall, 1588 Chi-nese characters), and Feng(Feng et al., 2004)incorporates branching counts in the evalua-tion function to be optimized for obtainingboundaries (word precision=76%, recall=78%,2000 sentences). From the performance resultslisted here, we can see that unsupervised seg-mentation is more di�cult, by far, than super-vised segmentation; therefore, the algorithmsare complex, and previous studies have tendedto be limited in terms of both the test corpussize and the target.In contrast, as assumption (A) is simple, wekeep this simplicity in our formalization anddirectly test the assumption on a large-scaletest corpus consisting of 1001 KB manuallysegmented data with the training corpus con-sisting of 200 MB of Chinese text.Chinese is such an important language thatsupervised segmentation methods are alreadyvery mature. The current state-of-the-art seg-mentation software developed by (Low et al.,2005), which ranks as the best in the SIGHANbakeo� (Emerson, 2005), attains word preci-sion and recall of 96.9% and 96.8%, respec-tively, on the PKU track. There is also free
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offsetFigure 2: Decrease in H(X jXn) for Chinesecharacters when n is increasedsoftware such as (Zhang et al., 2003) whoseperformance is also high. Even then, as mostsupervised methods learn on manually seg-mented newspaper data, when the input textis not from newspapers, the performance canbe insu�cient. Given that the construction oflearning data is costly, we believe the perfor-mance can be raised by combining the super-vised and unsupervised methods.Consequently, this paper veri�es assump-tion (A) in a fundamental manner for Chinesetext and addresses the questions of why and towhat extent (A) holds, when applying it to theChinese word segmentation problem. We �rstformalize assumption (A) in a general manner.2 The AssumptionGiven a set of elements � and a set of n-gramsequences �n formed of �, the conditional en-tropy of an element occurring after an n-gramsequence Xn is de�ned asH(X jXn) =� Xxn2�n P (xn)Xx2�P (xjxn) logP (xjxn); (1)where P (x) = P (X = x), P (xjxn) = P (X =xjXn = xn), and P (X = x) indicates the prob-ability of occurrence of x.A well-known observation on language datastates that H(X jXn) decreases as n increases(Bell et al., 1990). For example, Figure 2shows how H(X jXn) shifts when n increasesfrom 1 to 8 characters, where n is the length ofa word pre�x. This is calculated for all wordsexisting in the test corpus, with the entropybeing measured in the learning data (the learn-ing and test data are de�ned in x4).This phenomenon indicates that X will be-come easier to estimate as the context of Xn
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gets longer. This can be intuitively under-stood: it is easy to guess that \e" will followafter \Hello! How ar", but it is di�cult toguess what comes after the short string \He".The last term � log P (xjxn) in the above for-mula indicates the information of a token of xcoming after xn, and thus the branching afterxn. The latter half of the formula, the localentropy value for a given xn,H(X jXn = xn) = �Xx2�P (xjxn) logP (xjxn);(2)indicates the average information of branchingfor a speci�c n-gram sequence xn. As our in-terest in this paper is this local entropy, wedenote H(X jXn = xn) simply as h(xn) in therest of this paper.The decrease in H(X jXn) globally indicatesthat given an n-length sequence xn and an-other (n+1)-length sequence yn+1, the follow-ing inequality holds on average:h(xn) > h(yn+1): (3)One reason why inequality (3) holds for lan-guage data is that there is context in language,and yn+1 carries a longer context as comparedwith xn. Therefore, if we suppose that xn isthe pre�x of xn+1, then it is very likely thath(xn) > h(xn+1) (4)holds, because the longer the preceding n-gram, the longer the same context. For ex-ample, it is easier to guess what comes af-ter x6=\natura" than what comes after x5 =\natur". Therefore, the decrease in H(X jXn)can be expressed as the concept that if the con-text is longer, the uncertainty of the branchingdecreases on average. Then, taking the logicalcontraposition, if the uncertainty does not de-crease, the context is not longer, which can beinterpreted as the following:If the entropy of successive tokens in-creases, the location is at a contextborder. (B)For example, in the case of x7 = \natu-ral", the entropy h(\natural") should be largerthan h(\natura"), because it is uncertain whatcharacter will allow x7 to succeed. In the nextsection, we utilize assumption (B) to detectcontext boundaries.

Figure 3: Our model for boundary detectionbased on the entropy of branching3 Boundary Detection Using theEntropy of BranchingAssumption (B) gives a hint on how to utilizethe branching entropy as an indicator of thecontext boundary. When two semantic units,both longer than 1, are put together, the en-tropy would appear as in the �rst �gure of Fig-ure 3. The �rst semantic unit is from o�sets0 to 4, and the second is from 4 to 8, witheach unit formed by elements of �. In the �g-ure, one possible transition of the branchingdegree is shown, where the plot at k on thehorizontal axis denotes the entropy for h(x0;k)and xn;m denotes the substring between o�setsn and m.Ideally, the entropy would take a maximumat 4, because it will decrease as k is increasedin the ranges of k < 4 and 4 < k < 8, andat k = 4, it will rise. Therefore, the positionat k = 4 is detected as the \local maximumvalue" when monitoring h(x0;k) over k. Theboundary condition after such observation canbe rede�ned as the following:Bmax Boundaries are locations where the en-tropy is locally maximized.A similar method is proposed by Harris (Har-ris, 1955), where morpheme borders can bedetected by using the local maximum of thenumber of di�erent tokens coming after a pre-�x.This only holds, however, for semantic unitslonger than 1. Units often have a length of
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1, especially in our case with Chinese charac-ters as elements, so that there are many one-character words. If a unit has length 1, thenthe situation will look like the second graphin Figure 3, where three semantic units, x0;4,x4;5, and x5;8, are present, with the middleunit having length 1. First, at k = 4, thevalue of h increases. At k = 5, the value mayincrease or decrease, because the longer con-text results in an uncertainty decrease, thoughan uncertainty decrease does not necessarilymean a longer context. When h increases atk = 5, the situation will look like the secondgraph. In this case, the condition Bmax willnot su�ce, and we need a second boundarycondition:Bincrease Boundaries are locations where theentropy is increased.On the other hand, when h decreases at k = 5,then even Bincrease cannot be applied to detectk = 5 as a boundary. We have other chances todetect k = 5, however, by considering h(xi;k),where 0 < i < k. According to inequality(3), then, a similar trend should be presentfor plots of h(xi;k), assuming that h(x0;n) >h(x0;n+1); then, we haveh(xi;n) > h(xi;n+1); for 0 < i < n: (5)The value h(xi;k) would hopefully rise for somei if the boundary at k = 5 is important,although h(xi;k) can increase or decrease atk = 5, just as in the case for h(x0;n).Therefore, when the target language con-sists of many one-element units, Bincrease iscrucial for collecting all boundaries. Note thatthe boundaries detected by Bmax are includedin those detected by the condition Bincrease ,and also that Bincrease is a boundary conditionrepresenting the assumption (B) more directly.So far, we have considered only regular-order processing: the branching degree is cal-culated for successive elements of xn. We canalso consider the reverse order, which involvescalculating h for the previous element of xn. Inthe case of the previous element, the questionis whether the head of xn forms the beginningof a context boundary.Next, we move on to explain how we ac-tually applied the above formalization to theproblem of Chinese segmentation.

4 DataThe whole data for training amounted to 200MB, from the Contemporary Chinese Cor-pus of the Center of Chinese Linguistics atPeking University (Center for Chinese Linguis-tics, 2006). It consists of several years of Peo-ples' Daily newspapers, contemporary Chineseliterature, and some popular Chinese maga-zines. Note that as our method is unsuper-vised, this learning corpus is just text withoutany segmentation.The test data were constructed by selectingsentences from the manually segmented Peo-ple's Daily corpus of Peking University. In to-tal, the test data amounts to 1001 KB, consist-ing 147026 Chinese words. The word bound-aries indicated in the corpus were used as ourgolden standard.As punctuation is clear from text bound-aries in Chinese text, we pre-processed the testdata by segmenting sentences at punctuationlocations to form text fragments. Then, fromall fragments, n-grams of less than 6 charac-ters were obtained. The branching entropiesfor all these n-grams existing within the testdata were obtained from the 200 MB of data.We used 6 as the maximum n-gram lengthbecause Chinese words with a length of morethan 5 characters are rare. Therefore, scan-ning the n-grams up to a length of 6 was su�-cient. Another reason is that we actually con-ducted the experiment up to 8-grams, but theperformance did not improve from when weused 6-grams.Using this list of words ranging from un-igrams to 6-grams and their branching en-tropies, the test data were processed so as toobtain the word boundaries.5 Analysis for Small ExamplesFigure 4 shows an actual graph ofthe entropy shift for the input phrase(wei lai fa zhande mu biao he zhi dao fang zhen, the aim andguideline of future development). The upper�gure shows the entropy shift for the forwardcase, and the lower �gure shows the entropyshift for the backward case. Note that for thebackward case, the branching entropy wascalculated for characters before the xn.In the upper �gure, there are two lines, one
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Figure 4: Entropy shift for a small example(forward and backward)for the branching entropy after the substringsstarting from . The leftmost line plotsh( ), h( ) : : : h( ). Thereare two increasing points, indicating that thephrase was segmented between and ,and between and . The second lineplots h( ) : : : h( ). The increas-ing locations are between and , be-tween and , and after .The lower �gure is the same. There are twolines, one for the branching entropy before thesubstring ending with su�x . The rightmostline plots h( ), h( ) . . .h( )running from back to front. We can see in-creasing points (as seen from back to front) be-tween and , and between and .As for the last line, it also starts from andruns from back to front, indicating boundariesbetween and , between and ,and just before .If we consider all the increasing points in allfour lines and take the set union of them, weobtain the correct segmentation as follows:j j j j j j ,which is the 100 % correct segmentation interms of both recall and precision.In fact, as there are 12 characters in thisinput, there should be 12 lines starting fromeach character for all substrings. For read-ability, however, we only show two lines eachfor the forward and backward cases. Also, themaximum length of a line is 6, because we only

took 6-grams out of the learning data. If weconsider all the increasing points in all 12 linesand take the set union, then we again obtain100 % precision and recall. It is amazing howall 12 lines indicate only correct word bound-aries.Also, note how the correct full segmenta-tion is obtained only with partial informationfrom 4 lines taken from the 12 lines. Basedon this observation, we next explain the algo-rithm that we used for a larger-scale experi-ment.6 Algorithm for SegmentationHaving determined the entropy for all n-gramsin the learning data, we could scan througheach chunk of test data in both the forwardorder and the backward order to determine thelocations of segmentation.As our intention in this paper is above all tostudy the innate linguistic structure describedby assumption (B), we do not want to add anyartifacts other than this assumption. For suchexact veri�cation, we have to scan through allpossible substrings of an input, which amountsto O(n2) computational complexity, where nindicates the input length of characters.Usually, however, h(xm;n) becomes impos-sible to measure when n � m becomes large.Also, as noted in the previous section, wordslonger than 6 characters are very rare in Chi-nese text. Therefore, given a string x, all n-grams of no more than 6 grams are scanned,and the points where the boundary conditionholds are output as boundaries.As for the boundary conditions, we haveBmax and Bincrease , and we also utilizeBordinary , where location n is considered as aboundary when the branching entropy h(xn)is simply above a given threshold. Precisely,there are three boundary conditions:Bmax h(xn) > valmax,where h(xn) takes a local maximum,Bincrease h(xn+1)� h(xn) > valdelta,Bordinary h(xn) > val,where valmax, valdelta, and val are arbitrarythresholds.
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7 Large-Scale Experiments7.1 De�nition of Precision and RecallUsually, when precision and recall are ad-dressed in the Chinese word segmentation do-main, they are calculated based on the numberof words. For example, consider a correctlysegmented sequence \aaajbbbjcccjddd", witha,b,c,d being characters and \j" indicating aword boundary. Suppose that the machine'sresult is \aaabbbjcccjddd"; then the correctwords are only \ccc" and \ddd", giving a valueof 2. Therefore, the precision is 2 dividedby the number of words in the results (i.e., 3for the words \aaabbb", \ccc", \ddd"), giving67%, and the recall is 2 divided by the totalnumber of words in the golden standard (i.e., 4for the words \aaa",\bbb", \ccc", \ddd") giv-ing 50%. We call these values the word pre-cision and recall, respectively, throughout thispaper.In our case, we use slightly di�erent mea-sures for the boundary precision and recall,which are based on the correct number ofboundaries. These scores are also utilized espe-cially in previous works on unsupervised seg-mentation (Ando and Lee, 2000) (Sun et al.,1998). Precisely,Precision = NcorrectNtest (6)Recall = NcorrectNtrue ; where (7)Ncorrect is the number of correct boundaries inthe result,Ntest is the number of boundaries in the testresult, and,Ntrue is the number of boundaries in thegolden standard.For example, in the case of the machine resultbeing \aaabbbjcccjddd", the precision is 100%and the recall is 75%. Thus, we consider thereto be no imprecise result as a boundary in theoutput of \aaabbbjcccjddd".The crucial reason for using the boundaryprecision and recall is that boundary detec-tion and word extraction are not exactly thesame task. In this sense, assumption (A) or(B) is a general assumption about a bound-ary (of a sentence, phrase, word, morpheme).Therefore, the boundary precision and recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

re
ca

ll

precision

Bincrease
Bordinary

BmaxFigure 5: Precision and recallmeasure serves for directly measuring bound-aries.Note that all precision and recall scores fromnow on in this paper are boundary precisionand recall. Even in comparing the super-vised methods with our unsupervised methodlater, the precision and recall values are all re-calculated as boundary precision and recall.7.2 Precision and RecallThe precision and recall graph is shown in Fig-ure 5. The horizontal axis is the precisionand the vertical axis is the recall. The threelines from right to left (top to bottom) cor-respond to Bincrease (0:0 � valdelta � 2:4),Bmax (4:0 � valmax � 6:2), and Bordinary(4:0 � val � 6:2). All are plotted with aninterval of 0.1. For every condition, the largerthe threshold, the higher the precision and thelower the recall.We can see how Bincrease and Bmax keephigh precision as compared with Bordinary . Wealso can see that the boundary can be moreeasily detected if it is judged as comprisingthe proximity value of h(xn).For Bincrease, in particular, when valdelta =0:0, the precision and recall are still at 0.88 and0.79, respectively. Upon increasing the thresh-old to valdelta = 2:4, the precision is higherthan 0.96 at the cost of a low recall of 0.29. Asfor Bmax, we also observe a similar tendencybut with low recall due to the smaller numberof local maximum points as compared with thenumber of increasing points. Thus, we see howBincrease attains a better performance amongthe three conditions. This shows the correct-ness of assumption (B).From now on, we consider only Bincrease andproceed through our other experiments.
433



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  100  1000  10000  100000  1e+06

size(KB)

recall
precisionFigure 6: Precision and recall depending ontraining data sizeNext, we investigated how the training datasize a�ects the precision and recall. This time,the horizontal axis is the amount of learningdata, varying from 10 KB up to 200 MB, ona log scale. The vertical axis shows the pre-cision and recall. The boundary condition isBincrease with valdelta = 0:1.We can see how the precision always re-mains high, whereas the recall depends on theamount of data. The precision is stable at anamazingly high value, even when the branch-ing entropy is obtained from a very small cor-pus of 10 KB. Also, the linear increase in therecall suggests that if we had more than 200MB of data, we would expect to have an evenhigher recall. As the horizontal axis is in a logscale, however, we would have to have giga-bytes of data to achieve the last several per-cent of recall.7.3 Error AnalysisAccording to our manual error analysis, thetop-most three errors were the following:� Numbers: dates, years, quantities (ex-ample: 1998, written in Chinese numbercharacters)� One-character words (example: (at)(again) (toward) (and))� Compound Chinese words (example:(open mind) being segmentedinto (open) and (mind))The reason for the bad results with numbersis probably because the branching entropy fordigits is less biased than for usual ideograms.Also, for one-character words, our method islimited, as we explained in x3. Both of thesetwo problems, however, can be solved by ap-

plying special preprocessing for numbers andone-character words, given that many of theone-character words are functional characters,which are limited in number. Such improve-ments remain for our future work.The third error type, in fact, is one thatcould be judged as correct segmentation. Inthe case of \open mind", it was not segmentedinto two words in the golden standard; there-fore, our result was judged as incorrect. Thiscould, however, be judged as correct.The structures of Chinese words and phrasesare very similar, and there are no clear crite-ria for distinguishing between a word and aphrase. The unsupervised method determinesthe structure and segments words and phrasesinto smaller pieces. Manual recalculation ofthe accuracy comprising such cases also re-mains for our future work.8 ConclusionWe have reported an unsupervised Chinesesegmentation method based on the branchingentropy. This method is based on an assump-tion that \if the entropy of successive tokensincreases, the location is at the context bor-der." The entropies of n-grams were learnedfrom an unsegmented 200-MB corpus, and theactual segmentation was conducted directlyaccording to the above assumption, on 1 MBof test data. We found that the precision wasas high as 90% with recall being around 80%.We also found an amazing tendency for theprecision to always remain high, regardless ofthe size of the learning data.There are two important considerations forour future work. The �rst is to �gure out howto combine the supervised and unsupervisedmethods. In particular, as the performance ofthe supervised methods could be insu�cientfor data that are not from newspapers, thereis the possibility of combining the supervisedand unsupervised methods to achieve a higheraccuracy for general data. The second futurework is to verify our basic assumption in otherlanguages. In particular, we should undertakeexperimental studies in languages written withphonogram characters.
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