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Abstract

In this paper, we describe the research 
using  machine  learning  techniques  to 
build a comma checker to be integrated 
in a grammar checker for Basque. After 
several experiments, and trained with a 
little corpus of 100,000 words, the sys
tem guesses correctly not placing com
mas with a precision of 96% and a re
call of 98%. It also gets a precision of 
70% and a recall of 49% in the task of 
placing  commas.  Finally,  we  have 
shown  that  these  results  can  be  im
proved using a bigger and a more ho
mogeneous  corpus  to  train,  that  is,  a 
bigger corpus written by one unique au
thor. 

1 Introduction

In the last years, there have been many studies 
aimed  at  building  a  grammar  checker  for  the 
Basque language (Ansa et al., 2004; Diaz De Il
arraza et al., 2005). These works have been fo
cused, mainly, on building rule sets ––taking into 
account syntactic information extracted from the 
corpus  automatically––  that  detect  some  erro
neous grammar forms. The research here presen
ted wants to complement the earlier work by fo
cusing on  the  style  and the  punctuation of  the 
texts. To be precise, we have experimented using 
machine learning techniques for the special case 
of the comma, to evaluate their performance and 
to analyse the possibility of applying it in other 
tasks of the grammar checker.  

However,  developing  a  punctuation  checker 
encounters  one  problem  in  particular:  the  fact 
that the punctuation rules are not totally estab
lished. In general, there is no problem when us
ing the  full  stop,  the  question mark or  the ex
clamation mark.  Santos (1998) highlights these 
marks are reliable punctuation marks, while all 
the rest are unreliable. Errors related to the reli

able ones (putting or not the initial  question or 
exclamation mark depending on the language, for 
instance) are not so hard to treat. A rule set to 
correct some of these has already been defined 
for the Basque language (Ansa et al., 2004). In 
contrast, the comma is the most polyvalent and, 
thus, the least defined punctuation mark (Bayrak
tar et al., 1998; Hill and Murray, 1998). The am
biguity of the comma, in fact,  has been shown 
often (Bayraktar et  al.,  1998; Beeferman et al., 
1998;  Van  Delden  S.  and  Gomez  F.,  2002). 
These works have shown the lack of fixed rules 
about the comma. There are only some intuitive 
and  generally  accepted  rules,  but  they  are  not 
used in a standard way. In Basque, this problem 
gets even more evident, since the standardisation 
and  normalisation  of  the  language  began  only 
about twentyfive years ago and it  has not fin
ished yet. Morphology is mostly defined, but, on 
the contrary, as far as syntax is concerned, there 
is  quite  work  to  do.  In  punctuation  and  style, 
some basic rules have been defined and accepted 
by the Basque Language Academy (Zubimendi, 
2004).  However,  there  are  not  final  decisions 
about the case of the comma. 

Nevertheless,  since  Nunberg’s  monograph 
(Nunberg, 1990), the importance of the comma 
has  been  undeniable,  mainly  in  these  two  as
pects: i) as a due to the syntax of the sentence 
(Nunberg, 1990; Bayraktar et al., 1998; Garzia, 
1997), and ii) as a basis to improve some natural 
language  processing  tools  (syntactic  analysers, 
error  detection  tools…),  as  well  as  to  develop 
some  new  ones  (Briscoe  and  Carroll,  1995; 
Jones, 1996). The relevance of the comma for the 
syntax of the sentence may be easily proved with 
some clarifying examples where the sentence is 
understood in  one or  other  way,  depending on 
whether  a  comma  is  placed  or  not  (Nunberg, 
1990): 

a. Those students who can, contribute to the 
United Fund. 

b. Those students who can contribute to the 
United Fund. 
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In the same sense,  it  is  obvious  that  a  well 
punctuated  text,  or  more  concretely,  a  correct 
placement of the commas, would help consider
ably  in  the  automatic  syntactic  analysis  of  the 
sentence,  and, therefore,  in the development of 
more and better tools in the NLP field. Say and 
Akman (1997) summarise the research efforts in 
this direction.

As an important background for our work, we 
note  where  the  linguistic  information  on  the 
comma for the Basque language was formalised. 
This  information  was  extracted  after  analysing 
the  theories  of  some experts  in  Basque  syntax 
and punctuation (Aldezabal et al., 2003). In fact, 
although no final decisions have been taken by 
the Basque Language Academy yet,  the theory 
formalised in the above mentioned work has suc
ceeded in unifying the main points of view about 
the  punctuation in  Basque.  Obviously,  this  has 
been the basis for our work. 

2 Learning commas

We have designed two different but combinable 
ways to get the comma checker:

 based on clause boundaries
 based directly on corpus

Bearing  in  mind  the formalised  theory  of 
Aldezabal et  al.  (2003)1,  we realised that if  we 
got to split the sentence into clauses, it would be 
quite easy to develop rules for detecting the exact 
places where commas would have to go. Thus, 
the best way to build a comma checker would be 
to get, first, a clause identification tool. 

Recent papers in this area report quite good 
results using machine learning techniques. Car
reras and Màrquez (2003) get one of the best per
formances in this  task (84.36% in test).  There
fore, we decided to adopt this as a basis in order 
to  get  an  automatic  clause  splitting  tool  for 
Basque.  But  as  it  is  known,  machine  learning 
techniques cannot be applied if no training cor
pus is available, and one year ago, when we star
ted this  process,  Basque texts  with this  tagged 
clause splits were not available.

Therefore, we decided to use the second al
ternative.  We  had  available  some  corpora  of 
Basque, and we decided to try learning commas 
from raw text, since a previous tagging was not 
needed. The problem with the raw text is that its 
commas are not the result of applying consistent 
rules.

1 From now on, we will speak about this as “the accepted theory of Basque 

punctuation”. 

Related work

Machine learning techniques have been applied 
in many fields and for  many purposes,  but  we 
have found only one reference in the literature 
related to the use of machine learning techniques 
to assign commas automatically. 

Hardt (2001) describes research in using the 
Brill tagger (Brill 1994; Brill, 1995) to learn to 
identify incorrect commas in Danish. The system 
was developed by randomly inserting commas in 
a text, which were tagged as incorrect, while the 
original  commas  were  tagged  as  correct.  This 
system identifies incorrect commas with a preci
sion  of  91%  and  a  recall  of  77%,  but  Hardt 
(2001) does not mention anything about identify
ing correct commas. 

In  our  proposal,  we have tried  to  carry out 
both aspects, taking as a basis other works that 
also use machine learning techniques in similar 
problems  such  as  clause  splitting  (Tjong  Kim 
Sang E.F. and Déjean H., 2001) or detection of 
chunks (Tjong Kim Sang E.F. and Buchholz S., 
2000).

3 Experimental setup

Corpora

As we have mentioned before, some corpora 
in Basque are available. Therefore, our first task 
was to select the training corpora, taking into ac
count that well punctuated corpora were needed 
to train the machine correctly. For that purpose, 
we looked for corpora that satisfied as much as 
possible our “accepted theory of Basque punctu
ation”.  The  corpora  of  the  unique  newspaper 
written in Basque, called  Egunkaria (nowadays 
Berria), were chosen, since they are supposed to 
use the “accepted theory of Basque punctuation”. 
Nevertheless,  after  some brief  verifications, we 
realised that the texts of the corpora do not fully 
match with our theory. This can be understood 
considering that a lot of people work in a news
paper. That is, every journalist can use his own 
interpretation of  the  “accepted theory”,  even if 
all of them were instructed to use it in the same 
way. Therefore, doing this  research, we had in 
mind that the results we would get were not go
ing to be perfect.

To counteract this problem, we also collected 
more  homogeneous  corpora  from  prestigious 
writers: a translation of a book of philosophy and 
a novel. Details about these corpora are shown in 
Table 1.
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Size of the corpora
Corpora from the newspaper Egunkaria 420,000 words
Philosophy texts written by one unique author 25,000 words
Literature texts written by one unique author 25,000 words

Table 1. Dimensions of the used corpora

A short version of the first corpus was used in 
different experiments in order to tune the system 
(see section 4). The differences between the re
sults  depending on the type of  the corpora are 
shown in section 5.

Evaluation

Results are shown using the standard measures in 
this area: precision, recall and fmeasure2, which 
are calculated based on the test corpus. The res
ults are shown in two colums ("0" and "1") that 
correspond to the result categories used. The res
ults for the column “0” are the ones for the in
stances that are not followed by a comma. On the 
contrary, the results for the column “1” are the 
results for the instances that should be followed 
by a comma. 

Since  our  final  goal  is  to  build  a  comma 
checker,  the precision in the column “1” is the 
most  important  data  for  us,  although the recall 
for the same column is also relevant. In this kind 
of tools, the most important thing is to first ob
tain all the comma proposals right (precision in 
columns “1”), and then to obtain all the possible 
commas (recall in columns “1”).

Baselines

In  the  beginning,  we  calculated  two  possible 
baselines based on a big part of the newspaper 
corpora in order to choose the best one. 

The  first  one  was  based  on  the  number  of 
commas  that  appeared  in  these  texts.  In  other 
words,  we  calculated  how  many  commas  ap
peared in the corpora (8% out of all words), and 
then we put commas randomly in this proportion 
in the test corpus. The results obtained were not 
very good (see Table 2, baseline1), especially for 
the  instances  “followed by  a  comma” (column 
“1”).

The second baseline was developed using the 
list  of  words appearing before a comma in the 
training corpora. In the test corpus, a word was 
tagged as “followed by a comma” if it was one of 
the words of the mentioned list. The results (see 
baseline 2, in Table 2) were better, in this case, 
for the instances followed by a comma (column 
named  “1”).  But,  on  the  contrary,  baseline  1 
provided us with better results for the instances 
not followed by a comma (column named “0”). 
That is why we decided to take, as our baseline, 
2 fmeasure = 2*precision*recall / (precision+recall)

the best data offered by each baseline (the ones 
in bold in table 2). 

0 1
Prec. Rec. Meas. Prec. Rec. Meas.

baseline 1 0.927 0.924 0.926 0.076 0.079 0.078

baseline 2 0.946 0.556 0.700 0,096 0.596 0.165

Table 2: The baselines

Methods and attributes

We  use  the  WEKA3 implementation  of  these 
classifiers: the Naive Bayes based classifier (Na
iveBayes),  the  support  vector  machine  based 
classifier  (SMO)  and  the  decisiontree  (C4.5) 
based one (j48).

It  has  to  be  pointed  out  that  commas  were 
taken  away  from  the  original  corpora.  At  the 
same time, for each token, we stored whether it 
was followed by a  comma or not.  That  is,  for 
each  word  (token),  it  was  stored  whether  a 
comma was placed next to it or not. Therefore, 
each token in the corpus is equivalent to an ex
ample (an instance). The attributes of each token 
are based on the token itself and some surround
ing ones. The application window describes the 
number of tokens considered as information for 
each token.

Our initial application window was [5, +5]; 
that means we took into account the previous and 
following 5 words (with their corresponding at
tributes)  as  valid  information  for  each  word. 
However, we tuned the system with different ap
plication windows (see section 4). 

Nevertheless, the attributes managed for each 
word can be as complex as we want. We could 
only use words, but we thought some morpho
syntactic information would be beneficial for the 
machine to learn. Hence, we decided to include 
as much information as we could extract using 
the shallow syntactic parser of Basque (Aduriz et 
al.,  2004).  This  parser  uses  the  tokeniser,  the 
lemmatiser, the chunker and the morphosyntactic 
disambiguator  developed by  the  IXA4 research 
group. 

The attributes we chose to use for each token 
were the following:

 wordform
 lemma
 category 
 subcategory
 declension case
 subordinateclause type

3 WEKA is a collection of machine learning algorithms for data mining tasks 
(http://www.cs.waikato.ac.nz/ml/weka/).
4 http://ixa.si.ehu.es
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 beginning of chunk (verb, nominal, enti
ty, postposition)

 end of chunk (verb, nominal, entity, post
position)

 part of an apposition
 other  binary  features:  multiple  word  to

ken,  full  stop,  suspension  points,  colon, 
semicolon,  exclamation  mark  and  ques
tion mark 

We also included some additional  attributes 
which were automatically calculated: 

 number of verb chunks to the beginning 
and to the end of the sentence 

 number of nominal chunks to the begin
ning and to the end of the sentence

 number  of  subordinateclause  marks  to 
the beginning and to the end of the sen
tence

 distance (in tokens) to the beginning and 
to the end of the sentence 

We also did other experiments using binary 
attributes that correspond to most used colloca
tions (see section 4).

Besides, we used the result attribute “comma” 
to store whether a comma was placed after each 
token. 

4 Experiments

Dimension of the corpus

In  this  test,  we  employed the  attributes  de
scribed in section 3 and an initial window of [5, 
+5], which means we took into account the pre
vious 5 tokens and the following 5. We also used 
the C4.5 algorithm initially, since this algorithm 
gets very good results in other similar machine 
learning  tasks  related  to  the  surface  syntax 
(Alegria et al., 2004).

0 1
Prec. Rec. Meas. Prec. Rec. Meas.

100,000 train / 30,000 test 0,955 0,981 0,968 0,635 0,417 0,503
160,000 train / 45,000 test 0,947 0,981 0,964 0,687 0,43 0,529

330,000 train / 90,000 test 0,96 0,982 0,971 0,701 0,504 0,587

Table 3. Results depending on the size of corpora 
(C4.5 algorithm; [5,+5] window).

As it  can be seen in table 3, the bigger the 
corpus,  the  better  the results,  but  logically,  the 
time expended to obtain the results also increases 
considerably. That is why we chose the smallest 
corpus  for  doing  the  remaining  tests  (100,000 
words  to  train  and  30,000  words  to  test).  We 
thought that the size of this corpus was enough to 
get good comparative results. This test, anyway, 
suggested that the best  results  we could obtain 

would  be  always  improvable  using  more  and 
more corpora. 

Selecting the window

Using the corpus and the attributes described be
fore, we did some tests to decide the best applic
ation window. As we have already mentioned, in 
some problems of this type, the information of 
the  surrounding  words  may  contain  important 
data to decide the result of the current word. 

In this test, we wanted to decide the best ap
plication window for our problem. 

0 1
Prec. Rec. Meas. Prec. Rec. Meas.

-5+5 0,955 0,981 0,968 0,635 0,417 0,503
-2+5 0,956 0,982 0,969 0,648 0,431 0,518
-3+5 0,957 0,979 0,968 0,627 0,441 0,518

-4+5 0,957 0,98 0,968 0,634 0,446 0,52
-5+2 0,956 0,982 0,969 0,65 0,424 0,514
-5+3 0,956 0,981 0,969 0,643 0,432 0,517
-5+4 0,955 0,982 0,968 0,64 0,417 0,505
-6+2 0,956 0,982 0,969 0,645 0,421 0,509
-6+3 0,956 0,982 0,969 0,646 0,426 0,514
-8+2 0,956 0,982 0,969 0,645 0,425 0,513
-8+3 0,956 0,979 0,967 0,615 0,431 0,507
-8+8 0,956 0,978 0,967 0,604 0,422 0,497

Table  4.  Results  depending  on  the  application 
window (C4.5 algorithm; 100,000 train / 30,000 
test)

As it can be seen, the best fmeasure for the 
instances followed by a comma was obtained us
ing the application window [4,+5]. However, as 
we have said before, we are more interested in 
the precision. Thus, the application window [5
,+2] gets the best precision, and, besides, its f
measure is almost the same as the best one. This 
is the reason why we decided to choose the [5
,+2] application window. 

Selecting the classifier

With  the  selected  attributes,  the  corpus  of 
130,000 words and the application window of [5
, +2], the next step was to select the best classifi
er for our problem. We tried the WEKA imple
mentation of these classifiers:  the Naive Bayes 
based classifier (NaiveBayes), the support vector 
machine based classifier (SMO) and the decision 
tree based one (j48).  Table 5 shows the results 
obtained:
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0 1
Prec. Rec. Meas. Prec. Rec. Meas.

NB 0,948 0,956 0,952 0,376 0,335 0,355

SMO 0,936 0,994 0,965 0,672 0,143 0,236

J48 0,956 0,982 0,969 0,652 0,424 0,514
Table 5. Results depending on the classifier 

(100,000 train / 30,000 test; [5, +2] window).

As we can see, the fmeasure for the instances 
not followed by a comma (column “0”) is almost 
the same for the three classifiers, but, on the con
trary, there is a considerable difference when we 
refer  to  the  instances  followed  by  a  comma 
(column “1”). The best fmeasure gives the C4.5 
based classifier (J48) due to the better recall, al
though the best precision is for the support vector 
machine  based  classifier  (SMO).  Definitively, 
the Naïve Bayes (NB) based classifier was dis
carded, but we had to think about the final goal 
of our research to choose between the other two 
classifiers.  Since our  final  goal  was to  build  a 
comma checker, we would have to have chosen 
the classifier that gave us the best precision, that 
is, the support vector machine based one. But the 
recall of the support vector machine based classi
fier was not as good as expected to be selected. 
Consequently,  we  decided  to  choose  the  C4.5 
based classifier. 

Selecting examples

At this  moment,  the results  we get  seem to be 
quite good for the instances not  followed by a 
comma, but  not  so good for  the  instances  that 
should follow a comma. This could be explained 
by the fact that we have no balanced training cor
pus. In other words, in a normal text, there are a 
lot  of  instances not  followed by a  comma, but 
there are not so many followed by it. Thus, our 
training  corpus,  logically,  has  very  different 
amounts of instances followed by a comma and 
not followed by a comma. That is the reason why 
the system will learn more easily to avoid the un
necessary  commas  than  placing  the  necessary 
ones. 

Therefore,  we  resolved  to  train  the  system 
with a corpus where the number of instances fol
lowed by a comma and not followed by a comma 
was the same. For that purpose, we prepared a 
perl program that changed the initial corpus, and 
saved only x words for each word followed by a 
comma. 

In  table  6,  we can see  the  obtained results. 
One to one means that in that case, the training 
corpus  had  one  instance  not  followed  by  a 
comma, for each instance followed by a comma. 

On the  other  hand,  one to  two means that  the 
training corpus had two instances not  followed 
by  a  comma  for  each  word  followed  by  a 
comma, and so on. 

0 1
Prec. Rec. Meas. Prec. Rec. Meas.

normal 0,955 0,981 0,968 0,635 0,417 0,503

one to one 0,989 0,633 0,772 0,164 0,912 0,277
one to two 0,977 0,902 0,938 0,367 0,725 0,487
one to three 0,969 0,934 0,951 0,427 0,621 0,506
one to four 0,966 0,952 0,959 0,484 0,575 0,526
one to five 0,966 0,961 0,963 0,534 0,568 0,55
one to six 0,963 0,966 0,964 0,55 0,524 0,537

Table  6.  Results  depending  on  the  number  of 
words  kept  for  each  comma  (C4.5  algorithm; 
100,000 train / 30,000 test; [5, +2] window). 

As  observed  in  the  previous  table,  the  best 
precision in the case of the instances followed by 
a comma is the original one: the training corpus 
where  no  instances  were  removed.  Note  that 
these results are referred as normal in table 6.

The corpus where a unique instance not fol
lowed by a comma is kept for each instance fol
lowed by a comma gets the best  recall  results, 
but the precision decreases notably. 

The  best  fmeasure  for  the  instances  that 
should be followed by a comma is obtained by 
the one to five scheme, but as mentioned before, 
a comma checker must take care of offering cor
rect comma proposals. In other words, as the pre
cision of the original corpus is quite better (ten 
points better), we decided to continue our work 
with  the  first  choice:  the  corpus  where  no  in
stances were removed. 

Adding new attributes

Keeping the best results obtained in the tests de
scribed above (C4.5 with the [5,  +2] window, 
and not removing any “not comma” instances), 
we thought that giving importance to the words 
that appear normally before the comma would in
crease our results. Therefore, we did the follow
ing tests: 

1) To search a big corpus in order to extract 
the most  frequent  one hundred words  that  pre
cede a  comma,  the  most  frequent  one hundred 
pairs of words (bigrams) that precede a comma, 
and the most frequent one hundred sets of three 
words (trigrams) that precede a comma, and use 
them as attributes in the learning process. 

2) To use only three attributes instead of the 
mentioned three hundred to encode the informa
tion  about  preceding  words.  The  first  attribute 
would indicate whether a word is or not one of 
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the  most  frequent  one  hundred  words.  The 
second attribute would mean whether a word is 
or not the last part of one of the most frequent 
one hundred pairs of words. And the third attrib
ute would mean whether a word is or not the last 
part of one of the most frequent one hundred sets 
of three words. 

3) The case (1), but with a little difference: 
removing the attributes “word” and “lemma” of 
each instance. 

0 1
Prec. Rec. Meas. Prec. Rec. Meas.

(0): normal 0,956 0,982 0,969 0,652 0,424 0,514

(1): 300 attributes + 0,96 0,983 0,972 0,696 0,486 0,572

(2): 3 attributes + 0,96 0,981 0,97 0,665 0,481 0,558

(3): 300 attributes +,  
no lemma, no word

0,955 0,987 0,971 0,71 0,406 0,517

Table 7. Results depending on the new attributes 
used (C4.5 algorithm; 100,000 train / 30,000 test; 
[5, +2] window; not removed instances).

Table 7 shows that case number 1 (putting the 
300 data as attributes) improves the precision of 
putting  commas  (column  “1”)  in  more  than  4 
points. Besides, it also improves the recall, and, 
thus, we improve almost 6 points its fmeasure. 

The third test gives the best precision, but the 
recall decreases considerably. Hence, we decided 
to choose the case number 1, in table 7.

5 Effect of the corpus type

As we have said before (see section 3), depend
ing on the quality of the texts, the results could 
be different.

In table 8, we can see the results using the dif
ferent types of corpus described in table 1. Obvi
ously,  to  give  a  correct  comparison,  we  have 
used the same size for all the corpora (20,000 in
stances to train and 5,000 instances to test, which 
is the maximum size we have been able to ac
quire for the three mentioned corpora).

0 1
Prec. Rec. Meas. Prec. Rec. Meas.

Newspaper 0.923 0.977 0.949 0.445 0.188 0.264
Philosophy 0.932 0.961 0.946 0.583 0.44 0.501
Literature 0.925 0.976 0.95 0.53 0.259 0.348

Table 8. Results depending on the type of corpo
ra (20,000 train / 5,000 test).

The first line shows the results obtained using 
the short version of the newspaper. The second 
line  describes  the  results  obtained  using  the 
translation of a book of philosophy, written com
pletely by one author. And the third one presents 

the  results  obtained  using  a  novel  written  in 
Basque. 

In any case, the results prove that our hypo
thesis  was  correct.  Using  texts  written  by  a 
unique author improves the results. The book of 
philosophy has the best precision and the best re
call.  It  could be  because it  has  very long sen
tences  and  because  philosophical  texts  use  a 
stricter syntax comparing with the free style of a 
literature writer.  

As it was impossible for us to collect the ne
cessary  amount  of  unique  author  corpora,  we 
could not go further in our tests.

6 Conclusions and future work

We have used machine learning techniques for 
the  task  of  placing  commas  automatically  in 
texts. As far as we know, it is quite a novel ap
plication field. Hardt (2001) described a system 
which identified incorrect commas with a preci
sion of 91% and a recall of 77% (using 600,000 
words  to  train).  These  results  are  comparable 
with the ones we obtain for the task of guessing 
correctly when not to place commas (see column 
“0” in the tables). Using 100,000 words to train, 
we obtain 96% of precision and 98.3% of recall. 
The main reason could be that we use more in
formation to learn.

However, we have not obtained as good res
ults as we hoped in the task of placing commas 
(we  get  a  precision  of  69.6%  and  a  recall  of 
48.6%). Nevertheless, in this particular task, we 
have  improved  considerably  with  the  designed 
tests, and more improvements could be obtained 
using more corpora and more specific corpora as 
texts written by a unique author or by using sci
entific texts. 

Moreover,  we have detected some possible 
problems that could have brought these regular 
results in the mentioned task:

 No fixed rules for commas in the Basque 
language

 Negative influence when training using 
corpora from different writers

In this sense, we have carried out a little ex
periment with some English corpora. Our hypo
thesis was that a completely settled language like 
English,  where  comma  rules  are  more  or  less 
fixed, would obtain better results. Taking a com
parative English corpus5 and similar learning at
tributes6 to  Basque’s  one,  we  got,  for  the  in
stances  followed  by  a  comma  (column  “1”  in 
tables), a better precision (%83.3) than the best 
5 A newspaper corpus, from Reuters
6 Linguistic information obtained using Freeling (http://garraf.ep
sevg.upc.es/freeling/)
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one obtained for the Basque language. However, 
the recall was worse than ours: %38.7. We have 
to take into account that we used less learning at
tributes with the English corpus and that we did 
not  change  the  application  window chosen  for 
the Basque experiment. Another application win
dow would have been probably more suitable for 
English.  Therefore, we believe that with a few 
tests  we  easily  would  achieve  a  better  recall. 
These  results,  anyway,  confirm our  hypothesis 
and our diagnosis of the detected problems. 

Nevertheless,  we think the presented results 
for the Basque language could be improved. One 
way would  be  to  use  “information  gain” tech
niques in order to carry out the feature selection. 
On the other hand, we think that more syntactic 
information, concretely clause splits tags, would 
be especially beneficial to detect those commas 
named delimiters by Nunberg (1990).

In fact, our main future research will consist 
on clause identification. Based on the “accepted 
theory of the comma”, we can assure that a good 
identification of clauses (together with some sig
nificant linguistic information we already have) 
would enable us to put commas correctly in any 
text,  just  implementing some simple rules.  Be
sides, a combination of both methods ––learning 
commas  and  putting  commas  after  identifying 
clauses––  would  probably  improve  the  results 
even more. 

Finally,  we contemplate building an ICALL 
(Intelligent Computer Assisted Language Learn
ing) system to help learners to put commas cor
rectly.
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