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Abstract 

This paper presents an adaptive learning 
framework for Phonetic Similarity 
Modeling (PSM) that supports the 
automatic construction of transliteration 
lexicons. The learning algorithm starts 
with minimum prior knowledge about 
machine transliteration, and acquires 
knowledge iteratively from the Web. We 
study the active learning and the 
unsupervised learning strategies that 
minimize human supervision in terms of 
data labeling. The learning process 
refines the PSM and constructs a 
transliteration lexicon at the same time. 
We evaluate the proposed PSM and its 
learning algorithm through a series of 
systematic experiments, which show that 
the proposed framework is reliably 
effective on two independent databases. 

1 Introduction 

In applications such as cross-lingual information 
retrieval (CLIR) and machine translation (MT), 
there is an increasing need to translate out-of-
vocabulary (OOV) words, for example from an 
alphabetical language to Chinese. Foreign proper 
names constitute a good portion of OOV words, 
which are translated into Chinese through 
transliteration. Transliteration is a process of 
translating a foreign word into a native language 
by preserving its pronunciation in the original 
language, otherwise known as translation-by-
sound.  

MT and CLIR systems rely heavily on 
bilingual lexicons, which are typically compiled 
manually. However, in view of the current 
information explosion, it is labor intensive, if not 
impossible, to compile a complete proper nouns 
lexicon. The Web is growing at a fast pace and is 
providing a live information source that is rich in 
transliterations. This paper presents a novel 

solution for automatically constructing an 
English-Chinese transliteration lexicon from the 
Web. 

Research on automatic transliteration has 
reported promising results for regular 
transliteration (Wan and Verspoor, 1998; Li et al, 
2004), where transliterations follow rigid 
guidelines. However, in Web publishing, 
translators in different countries and regions may 
not observe common guidelines. They often 
skew the transliterations in different ways to 
create special meanings to the sound equivalents, 
resulting in casual transliterations. In this case, 
the common generative models (Li et al, 2004) 
fail to predict the transliteration most of the time. 
For example, “Coca Cola” is transliterated into 
“ 可 口 可 樂  /Ke-Kou-Ke-Le/” as a sound 
equivalent in Chinese, which literately means 
“happiness in the mouth”. In this paper, we are 
interested in constructing lexicons that cover 
both regular and casual transliterations. 

When a new English word is first introduced, 
many transliterations are invented. Most of them 
are casual transliterations because a regular 
transliteration typically does not have many 
variations. After a while, the transliterations 
converge into one or two popular ones. For 
example, “Taxi” becomes “的士  /Di-Shi/” in 
China and “ 德 士  /De-Shi/” in Singapore. 
Therefore, the adequacy of a transliteration entry 
could be judged by its popularity and its 
conformity with the translation-by-sound 
principle. In any case, the phonetic similarity 
should serve as the primary basis of judgment. 

This paper is organized as follows. In Section 
2, we briefly introduce prior works pertaining to 
machine transliteration. In Section 3, we propose 
a phonetic similarity model (PSM) for 
confidence scoring of transliteration. In Section 4, 
we propose an adaptive learning process for 
PSM modeling and lexicon construction. In 
Section 5, we conduct experiments to evaluate 
different adaptive learning strategies. Finally, we 
conclude in Section 6. 
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2 Related Work 

In general, studies of transliteration fall into two 
categories: transliteration modeling (TM) and 
extraction of transliteration pairs (EX) from 
corpora.  

The TM approach models phoneme-based or 
grapheme-based mapping rules using a 
generative model that is trained from a large 
bilingual lexicon, with the objective of 
translating unknown words on the fly. The 
efforts are centered on establishing the phonetic 
relationship between transliteration pairs. Most 
of these works are devoted to phoneme1-based 
transliteration modeling (Wan and Verspoor 
1998, Knight and Graehl, 1998). Suppose that 
EW is an English word and CW is its prospective 
Chinese transliteration. The phoneme-based 
approach first converts EW into an intermediate 
phonemic representation P, and then converts the 
phonemic representation into its Chinese 
counterpart CW. In this way, EW and CW form 
an E-C transliteration pair. 

In this approach, we model the transliteration 
using two conditional probabilities, P(CW|P) and 
P(P|EW), in a generative model P(CW|EW) = 
P(CW|P)P(P|EW). Meng (2001) proposed a rule-
based mapping approach. Virga and Khudanpur 
(2003) and Kuo et al (2005) adopted the noisy-
channel modeling framework. Li et al (2004) 
took a different approach by introducing a joint 
source-channel model for direct orthography 
mapping (DOM), which treats transliteration as a 
statistical machine translation problem under 
monotonic constraints. The DOM approach, 
which is a grapheme-based approach, 
significantly outperforms the phoneme-based 
approaches in regular transliterations. It is noted 
that the state-of-the-art accuracy reported by Li 
et al (2004) for regular transliterations of the 
Xinhua database is about 70.1%, which leaves 
much room for improvement if one expects to 
use a generative model to construct a lexicon for 
casual transliterations. 

EX research is motivated by information 
retrieval techniques, where people attempt to 
extract transliteration pairs from corpora. The 
EX approach aims to construct a large and up-to-
date transliteration lexicon from live corpora. 
Towards this objective, some have proposed 
extracting translation pairs from parallel or 
comparable bitext using co-occurrence analysis 

                                                
1 Both phoneme and syllable based approaches are referred 
to as phoneme-based here. 

or a context-vector approach (Fung and Yee, 
1998; Nie et al, 1999). These methods compare 
the semantic similarities between words without 
taking their phonetic similarities into accounts. 
Lee and Chang (2003) proposed using a 
probabilistic model to identify E-C pairs from 
aligned sentences using phonetic clues. Lam et al 
(2004) proposed using semantic and phonetic 
clues to extract E-C pairs from comparable 
corpora. However, these approaches are subject 
to the availability of parallel or comparable 
bitext. A method that explores non-aligned text 
was proposed by harvesting katakana-English 
pairs from query logs (Brill et al, 2001). It was 
discovered that the unsupervised learning of such 
a transliteration model could be overwhelmed by 
noisy data, resulting in a decrease in model 
accuracy.  

Many efforts have been made in using Web-
based resources for harvesting transliteration/ 
translation pairs. These include exploring query 
logs (Brill et al, 2001), unrelated corpus (Rapp, 
1999), and parallel or comparable corpus (Fung 
and Yee, 1998; Nie et al, 1999; Huang et al 
2005). To establish correspondence, these 
algorithms usually rely on one or more statistical 
clues, such as the correlation between word 
frequencies, cognates of similar spelling or 
pronunciations. They include two aspects. First, 
a robust mechanism that establishes statistical 
relationships between bilingual words, such as a 
phonetic similarity model which is motivated by 
the TM research; and second, an effective 
learning framework that is able to adaptively 
discover new events from the Web. In the prior 
work, most of the phonetic similarity models 
were trained on a static lexicon. In this paper, we 
address the EX problem by exploiting a novel 
Web-based resource. We also propose a phonetic 
similarity model that generates confidence scores 
for the validation of E-C pairs. 

In Chinese webpages, translated or 
transliterated terms are frequently accompanied 
by their original Latin words. The latter serve as 
the appositives of the former. A sample search 
result for the query submission “Kuro” is the 
bilingual snippet2 “...經營 Kuro庫洛 P2P音樂交
換軟體的飛行網，3 日發表 P2P 與版權爭議的解
決方案— C2C (Content to Community)...”. The 
co-occurrence statistics in such a snippet was 
shown to be useful in constructing a transitive 
translation model (Lu et al, 2002). In the 

                                                
2 A bilingual snippet refers to a Chinese predominant text 
with embedded English appositives. 
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example above, “Content to Community” is not a 
transliteration of C2C, but rather an acronym 
expansion, while “庫洛 /Ku-Luo/”, as underlined, 
presents a transliteration for “Kuro”. What is 
important is that the E-C pairs are always closely 
collocated. Inspired by this observation, we 
propose an algorithm that searches over the close 
context of an English word in a bilingual snippet 
for the word’s transliteration candidates.  

The contributions of this paper include: (i) an 
approach to harvesting real life E-C 
transliteration pairs from the Web; (ii) a phonetic 
similarity model that evaluates the confidence of 
so extracted E-C pair candidates; (iii) a 
comparative study of several machine learning 
strategies. 

3 Phonetic Similarity Model 

English and Chinese have different syllable 
structures. Chinese is a syllabic language where 
each Chinese character is a syllable in either 
consonant-vowel (CV) or consonant-vowel-nasal 
(CVN) structure. A Chinese word consists of a 
sequence of characters, phonetically a sequence 
of syllables. Thus, in first E-C transliteration, it 
is a natural choice to syllabify an English word 
by converting its phoneme sequence into a 
sequence of Chinese-like syllables, and then 
convert it into a sequence of Chinese characters.  

There have been several effective algorithms 
for the syllabification of English words for 
transliteration. Typical syllabification algorithms 
first convert English graphemes to phonemes, 
referred to as the letter-to-sound transformation, 
then syllabify the phoneme sequence into a 
syllable sequence. For this method, a letter-to-
sound conversion is needed (Pagel, 1998; 
Jurafsky, 2000). The phoneme-based 
syllabification algorithm is referred to as PSA. 
Another syllabification technique attempts to 
map the grapheme of an English word to 
syllables directly (Kuo and Yang, 2004). The 
grapheme-based syllabification algorithm is 
referred to as GSA. In general, the size of a 
phoneme inventory is smaller than that of a 
grapheme inventory. The PSA therefore requires 
less training data for statistical modeling (Knight, 
1998); on the other hand, the grapheme-based 
method gets rid of the letter-to-sound conversion, 
which is one of the main causes of transliteration 
errors (Li et al, 2004).   

Assuming that Chinese transliterations always 
co-occur in proximity to their original English 
words, we propose a phonetic similarity 

modeling (PSM) that measures the phonetic 
similarity between candidate transliteration pairs. 
In a bilingual snippet, when an English word EW 
is spotted, the method searches for the word’s 
possible Chinese transliteration CW in its 
neighborhood. EW can be a single word or a 
phrase of multiple English words. Next, we 
formulate the PSM and the estimation of its 
parameters.  

3.1 Generative Model 

Let 1{ ,... ,... }m MES es es es= be a sequence of 
English syllables derived from EW, using the 
PSA or GSA approach, and 1{ ,... ,... }n NCS cs cs cs=  
be the sequence of Chinese syllables derived 
from CW, represented by a Chinese character 
string 1,... ,...,n NCW c c c→ . EW and CW is a 
transliteration pair. The E-C transliteration can 
be considered a generative process formulated by 
the noisy channel model, with EW as the input 
and CW as the output. ( / )P EW CW  is estimated 
to characterize the noisy channel, known as the 
transliteration probability. ( )P CW  is a language 
model to characterize the source language. 
Applying Bayes’ rule, we have 

( / ) ( / ) ( ) / ( )P CW EW P EW CW P CW P EW=   (1) 

Following the translation-by-sound principle, the 
transliteration probability ( / )P EW CW can be 
approximated by the phonetic confusion 
probability ( / )P ES CS , which is given as 

( / ) max ( , / ),P ES CS P ES CS
∆∈Φ

= ∆   (2) 

where Φ  is the set of all possible alignment 
paths between ES and CS. It is not trivial to find 
the best alignment path ∆ . One can resort to a 
dynamic programming algorithm. Assuming 
conditional independence of syllables in ES and 
CS, we have

1
( / ) ( / )

M
m mm

P ES CS p es cs
=

= ∏  in a 
special case where M N= . Note that, typically, 
we have N M≤  due to syllable elision. We 
introduce a null syllable ϕ  and a dynamic 
warping strategy to evaluate ( / )P ES CS  when 
M N≠ (Kuo et al, 2005). With the phonetic 
approximation, Eq.(1) can be rewritten as 

( / ) ( / ) ( ) / ( )P CW EW P ES CS P CW P EW≈     (3) 

The language model in Eq.(3) can be 
represented by Chinese characters n-gram 
statistics. 

1 2 11
( ) ( / , ,..., )

N
n n nn

P CW p c c c c− −=
= ∏   (4) 
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In adopting bigram, Eq.(4) is rewritten as 

1 12
( ) ( ) ( / )

N
n nn

P CW p c p c c −=
≈ ∏ . Note that the 

context of EW usually has a number of 
competing Chinese transliteration candidates in a 
set, denoted as Ω . We rank the candidates by 
Eq.(1) to find the most likely CW for a given EW. 
In this process, ( )P EW  can be ignored because it 
is the same for all CW candidates. The CW 
candidate that gives the highest posterior 
probability is considered the most probable 
candidate CW ′ . 

arg max ( / )

arg max ( / ) ( )
CW

CW

CW P CW EW

P ES CS P CW
∈Ω

∈Ω

′ =

≈
 (5) 

However, the most probable CW ′  isn’t 
necessarily the desired transliteration. The next 
step is to examine if CW ′  and EW indeed form a 
genuine E-C pair. We define the confidence of 
the E-C pair as the posterior odds similar to that 
in a hypothesis test under the Bayesian 
interpretation. We have 0H , which hypothesizes 
that CW ′ and EW  form an E-C pair, and 1H , 
which hypothesizes otherwise. The posterior 
odds is given as follows,  

0

1
'

( / ) ( / ') ( ')
( / ) ( / ) ( )CW

CW CW

P H EW P ES CS P CW
P H EW P ES CS P CW

σ
∈Ω
≠

= ≈
∑

(6) 

where 'CS is the syllable sequence of CW ′ , 
1( / )p H EW  is approximated by the probability 

mass of the competing candidates of CW ′ , 
or

'
( / ) ( )CW

CW CW
P ES CS P CW∈Ω

≠
∑ . The higher the σ  

is, the more probable that hypothesis 
0H overtakes 1H . The PSM formulation can be 

seen as an extension to prior work (Brill et al, 
2001) in transliteration modeling. We introduce 
the posterior odds σ as the confidence score so 
that E-C pairs that are extracted from different 
contexts can be directly compared. In practice, 
we set a threshold for σ  to decide a cutoff point 
for E-C pairs short-listing. 

3.2 PSM Estimation 
The PSM parameters are estimated from the 
statistics of a given transliteration lexicon, which 
is a collection of manually selected E-C pairs in 
supervised learning, or a collection of high 
confidence E-C pairs in unsupervised learning. 
An initial PSM is bootstrapped using prior 
knowledge such as rule-based syllable mapping. 
Then we align the E-C pairs with the PSM and 

derive syllable mapping statistics for PSA and 
GSA syllabifications. A final PSM is a linear 
combination of the PSA-based PSM (PSA-PSM) 
and the GSA-based PSM (GSA-PSM). The PSM 
parameter ( / )m np es cs can be estimated by an 
Expectation-Maximization (EM) process 
(Dempster, 1977). In the Expectation step, we 
compute the counts of events such as 
# ,m nes cs< >  and # ncs< >  by force-aligning the 
E-C pairs in the training lexicon Ψ . In the 
Maximization step, we estimate the PSM 
parameters ( / )m np es cs by  

( / ) # , /#m n m n np es cs es cs cs= < > < > .  (7) 
As the EM process guarantees non-decreasing 
likelihood probability ( / )P ES CS

∀Ψ∏ , we let 

the EM process iterate until ( / )P ES CS
∀Ψ∏  

converges. The EM process can be thought of as 
a refining process to obtain the best alignment 
between the E-C syllables and at the same time a 
re-estimating process for PSM parameters. It is 
summarized as follows. 
Start: Bootstrap PSM parameters 

( / )m np es cs using prior phonetic mapping 
knowledge 
E-Step: Force-align corpus Ψ  using existing 

( / )m np es cs  and compute the counts of 
# ,m nes cs< >  and # ncs< > ; 
M-Step: Re-estimate ( / )m np es cs  using the 
counts from E-Step. 
Iterate: Repeat E-Step and M-Step until 

( / )P ES CS
∀Ψ∏  converges. 

4 Adaptive Learning Framework 

We propose an adaptive learning framework 
under which we learn PSM and harvest E-C pairs 
from the Web at the same time. Conceptually, 
the adaptive learning is carried out as follows. 

We obtain bilingual snippets from the Web by 
iteratively submitting queries to the Web search 
engines (Brin and Page, 1998). For each batch of 
querying, the query results are all normalized to 
plain text, from which we further extract 
qualified sentences. A qualified sentence has at 
least one English word. Under this criterion, a 
collection of qualified sentences can be extracted 
automatically. To label the E-C pairs, each 
qualified sentence is manually checked based on 
the following transliteration criteria: (i) if an EW 
is partly translated phonetically and partly 
translated semantically, only the phonetic 
transliteration constituent is extracted to form a 

1132



transliteration pair; (ii) elision of English sound 
is accepted; (iii) multiple E-C pairs can appear in 
one sentence; (iv) an EW can have multiple valid 
Chinese transliterations and vice versa. The 
validation process results in a collection of 
qualified E-C pairs, also referred to as Distinct 
Qualified Transliteration Pairs (DQTPs).  

As formulated in Section 3, the PSM is trained 
using a training lexicon in a data driven manner. 
It is therefore very important to ensure that in the 
learning process we have prepared a quality 
training lexicon. We establish a baseline system 
using supervised learning. In this approach, we 
use human labeled data to train a model. The 
advantage is that it is able to establish a model 
quickly as long as labeled data are available. 
However, this method also suffers from some 
practical issues. First, the derived model can only 
be as good as the data that it sees. An adaptive 
mechanism is therefore needed for the model to 
acquire new knowledge from the dynamically 
growing Web. Second, a massive annotation of 
database is labor intensive, if not entirely 
impossible.  

To reduce the annotation needed, we discuss 
three adaptive strategies cast in the machine 
learning framework, namely active learning, 
unsupervised learning and active-unsupervised 
learning. The learning strategies can be depicted 
in Figure 1 with their difference being discussed 
next. We also train a baseline system using 
supervised learning approach as a reference point 
for benchmarking purpose. 

4.1 Active Learning 
Active learning is based on the assumption that a 
small number of labeled samples, which are 
DQTPs here, and a large number of unlabeled 

 

 
Figure 1. An adaptive learning framework for 
automatic construction of transliteration lexicon. 

samples are available. This assumption is valid in 
most NLP tasks. In contrast to supervised 
learning, where the entire corpus is labeled 
manually, active learning selects the most useful 
samples for labeling and adds the labeled 
examples to the training set to retrain the model. 
This procedure is repeated until the model 
achieves a certain level of performance. 
Practically, a batch of samples is selected each 
time. This is called batch-based sample selection 
(Lewis and Catlett, 1994), as shown in the search 
and ranking block in Figure 1.  

For an active learning to be effective, we 
propose using three measures to select candidates 
for human labeling. First, we would like to select 
the most uncertain samples that are potentially 
highly informative for the PSM model. The 
informativeness of a sample can be quantified by 
its confidence score σ  as in the PSM 
formulation. Ranking the E-C pairs by σ  is 
referred to as C-rank. The samples of low C-rank 
are the interesting samples to be labeled. Second, 
we would like to select candidates that are of low 
frequency. Ranking by frequency is called F-
rank. During Web crawling, most of the search 
engines use various strategies to prevent 
spamming and one of fundamental tasks is to 
remove the duplicated Web pages. Therefore, we 
assume that the bilingual snippets are all unique. 
Intuitively, E-C pairs of low frequency indicate 
uncommon events which are of higher interest to 
the model. Third, we would like to select 
samples upon which the PSA-PSM and GSA-
PSM disagree the most. The disagreed upon 
samples represent new knowledge to the PSM. In 
short, we select low C-rank, low F-rank and 
PSM-disagreed samples for labeling because the 
high C-rank, high F-rank and PSM-agreed 
samples are already well known to the model. 

4.2 Unsupervised Learning 
Unsupervised learning skips the human labeling 
step. It minimizes human supervision by 
automatically labeling the data. This can be 
effective if prior knowledge about a task is 
available, for example, if an initial PSM can be 
built based on human crafted phonetic mapping 
rules. This is entirely possible. Kuo et al (2005) 
proposed using a cross-lingual phonetic 
confusion matrix resulting from automatic 
speech recognition to bootstrap an initial PSM 
model. The task of labeling samples is basically 
to distinguish the qualified transliteration pairs 
from the rest. Unlike the sample selection 
method in active learning, here we would like to 
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select the samples that are of high C-rank and 
high F-rank because they are more likely to be 
the desired transliteration pairs. 

The difference between the active learning and 
the unsupervised learning strategies lies in that 
the former selects samples for human labeling, 
such as in the select & labeling block in Figure 1 
before passing on for PSM learning, while the 
latter selects the samples automatically and 
assumes they are all correct DQTPs. The 
disadvantage of unsupervised learning is that it 
tends to reinforce its existing knowledge rather 
than to discover new events.  

4.3 Active-Unsupervised Learning 
The active learning and the unsupervised 
learning strategies can be complementary. Active 
learning minimizes the labeling effort by 
intelligently short-listing informative and 
representative samples for labeling. It makes sure 
that the PSM learns new and informative 
knowledge over iterations. Unsupervised 
learning effectively exploits the unlabelled data. 
It reinforces the knowledge that PSM has 
acquired and allows PSM to adapt to changes at 
no cost. However, we do not expect 
unsupervised learning to acquire new knowledge 
like active learning does. Intuitively, a better 
solution is to integrate the two strategies into one, 
referred to as the active-unsupervised learning 
strategy. In this strategy, we use active learning 
to select a small amount of informative and 
representative samples for labeling. At the same 
time, we select samples of high confidence score 
from the rest and consider them correct E-C pairs. 
We then merge the labeled set with the high-
confidence set in the PSM re-training.  

5 Experiments 

We first construct a development corpus by 
crawling of webpages. This corpus consists of 
about 500 MB of webpages, called SET1 (Kuo et 
al, 2005). Out of 80,094 qualified sentences, 
8,898 DQTPs are manually extracted from SET1, 
which serve as the gold standard in testing. To 
establish a baseline system, we first train a PSM 
using all 8,898 DQTPs in supervised manner and 
conduct a closed test on SET1 as in Table 1. We 
further implement three PSM learning strategies 
and conduct a systematic series of experiments. 

 
 Precision Recall F-measure 

closed-test 0.79 0.69 0.74 
     Table 1. Supervised learning test on SET1 

5.1 Unsupervised Learning 
We follow the formulation described in 

Section 4.2. First, we derive an initial PSM using 
randomly selected 100 seed DQTPs and simulate 
the Web-based learning process with the SET1: 
(i) select high F-rank and high C-rank E-C pairs 
using PSM, (ii) add the selected E-C pairs to the 
DQTP pool as if they are true DQTPs, and (iii) 
reestimate PSM by using the updated DQTP pool. 

In Figure 2, we report the F-measure over 
iterations. The U_HF curve reflects the learning 
progress of using E-C pairs that occur more than 
once in the SET1 corpus (high F-rank). The 
U_HF_HR curve reflects the learning progress 
using a subset of E-C pairs from U_HF which 
has high posterior odds as defined in Eq.(6). 
Both selection strategies aim to select E-C pairs, 
which are as genuine as possible. 

0
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0.7
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U_HF
U_HF_HR

 
Figure 2. F-measure over iterations for 
unsupervised learning on SET1. 

 
We found that both U_HF and U_HF_HR give 

similar results in terms of F-measure. Without 
surprise, more iterations don’t always lead to 
better performance because unsupervised 
learning doesn’t aim to acquiring new knowledge 
over iterations. Nevertheless, unsupervised 
learning improves the initial PSM in the first 
iteration substantially. It can serve as an effective 
PSM adaptation method. 

5.2 Active Learning 
The objective of active learning is to minimize 
human supervision by automatically selecting the 
most informative samples to be labeled. The 
effect of active learning is that it maximizes 
performance improvement with minimum 
annotation effort. Like in unsupervised learning, 
we start with the same 100 seed DQTPs and an 
initial PSM model and carry out experiments on 
SET1: (i) select low F-rank, low C-rank and 
GSA-PSM and PSA-PSM disagreed E-C pairs; 
(ii) label the selected pairs by removing the non-
E-C pairs and add the labeled E-C pairs to the 
DQTP pool, and (iii) reestimate the PSM by 
using the updated DQTP pool.  
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To select the samples, we employ 3 different 
strategies: A_LF_LR, where we only select low 
F-rank and low C-rank candidates for labeling. 
A_DIFF, where we only select those that GSA-
PSM and PSA-PSM disagreed upon; and 
A_DIFF_LF_LR, the union of A_LF_LR and 
A_DIFF selections. As shown in Figure 3, the F-
measure of A_DIFF (0.729) and 
A_DIFF_LF_LR (0.731) approximate to that of 
supervised learning 0.735) after four iterations.   
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Figure 3. F-measure over iterations for active 
learning on SET1. 
 

With almost identical performance as 
supervised learning, the active learning approach 
has greatly reduced the number of samples for 
manual labeling as reported in Table 2. It is 
found that for active learning to reach the 
performance of supervised learning, A_DIFF is 
the most effective strategy. It reduces the 
labeling effort by 89.0%, from 80,094 samples to 
8,750. 

 
 Sample selection #samples labeled 

A_LF_LR 1,671 
A_DIFF 8,750 Active 

learning A_DIFF_LF_LR 9,683 
Supervised learning 80,094 

Table 2. Number of total samples for manual 
labeling in 6 iterations of Figure 3. 

5.3 Active Unsupervised Learning 
It would be interesting to study the performance 
of combining unsupervised learning and active 
learning. The experiment is similar to that of 
active learning except that, in step (iii) of active 
learning, we take the unlabeled high confidence 
candidates (high F-rank and high C-rank as in 
U_HF_HR of Section 5.1) as the true labeled 
samples and add into the DQTP pool. The result 
is shown in Figure 4. Although active 
unsupervised learning was reported having 
promising results (Riccardi and Hakkani-Tur, 
2003) in some NLP tasks, it has not been as 
effective as active learning alone in this 

experiment probably due to the fact the 
unlabeled high confidence candidates are still too 
noisy to be informative. 
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Figure 4. F-measure over iterations for active 
unsupervised learning on SET1. 

5.4 Learning Transliteration Lexicons 
The ultimate objective of building a PSM is to 
extract a transliteration lexicon from the Web by 
iteratively submitting queries and harvesting new 
transliteration pairs from the return results until 
no more new pairs. For example, by submitting 
“Robert” to search engines, we may get “Robert-
羅伯特”, “Richard-理查” and “Charles-查爾斯” 
in return. In this way, new queries can be 
generated iteratively, thus new pairs are 
discovered. We pick the best performing SET1-
derived PSM trained using A_DIFF_LF_LR 
active learning strategy and test it on a new 
database SET2 which is obtained in the same 
way as SET1. 
 

 Before  
adaptation 

After  
adaptation 

#distinct E-C pairs 137,711 130,456  
Precision 0.777 0.846  

#expected DQTPs 107,001 110,365  
Table 3. SET1-derived PSM adapted towards 
SET2. 

 
SET2 contains 67,944 Web pages amounting 

to 3.17 GB. We extracted 2,122,026 qualified 
sentences from SET2. Using the PSM, we extract 
137,711 distinct E-C pairs. As the gold standard 
for SET2 is unavailable, we randomly select 
1,000 pairs for manual checking. A precision of 
0.777 is reported. In this way, 107,001 DQTPs 
can be expected. We further carry out one 
iteration of unsupervised learning using 
U_HF_HR to adapt the SET1-derived PSM 
towards SET2. The results before and after 
adaptation are reported in Table 3. Like the 
experiment in Section 5.1, the unsupervised 
learning improves the PSM in terms of precision 
significantly. 
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6 Conclusions 

We have proposed a framework for harvesting E-
C transliteration lexicons from the Web using 
bilingual snippets. In this framework, we 
formulate the PSM learning and E-C pair 
evaluation methods. We have studied three 
strategies for PSM learning aiming at reducing 
the human supervision.  

The experiments show that unsupervised 
learning is an effective way for rapid PSM 
adaptation while active learning is the most 
effective in achieving high performance. We find 
that the Web is a resourceful live corpus for real 
life E-C transliteration lexicon learning, 
especially for casual transliterations. In this 
paper, we use two Web databases SET1 and 
SET2 for simplicity. The proposed framework 
can be easily extended to an incremental learning 
framework for live databases. This paper has 
focused solely on use of phonetic clues for 
lexicon and PSM learning. We have good reason 
to expect the combining semantic and phonetic 
clues to improve the performance further.  
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