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Abstract

In this paper we define a novel similarity
measure between examples of textual en-
tailments and we use it as a kernel func-
tion in Support Vector Machines (SVMs).
This allows us to automatically learn the
rewrite rulesthat describe a non trivial set
of entailment cases. The experiments with
the data sets of the RTE 2005 challenge
show an improvement of 4.4% over the
state-of-the-art methods.

1 Introduction

Recently, textual entailment recognition has been
receiving a lot of attention. The main reason is
that the understanding of the basic entailment pro-
cesses will allow us to model more accurate se-
mantic theories of natural languages (Chierchia
and McConnell-Ginet, 2001) and design important
applications (Dagan and Glickman, 2004), e.g.,
Question Answering and Information Extraction.

However, previous work (e.g., (Zaenen et al.,
2005)) suggests that determining whether or not
a textT entails a hypothesisH is quite complex
even when all the needed information is explic-
itly asserted. For example, the sentenceT1: “At
the end of the year, all solid companies pay divi-
dends.” entails the hypothesisH1: “At the end of
the year, all solid insurancecompanies pay divi-
dends.” but it does not entail the hypothesisH2:
“At the end of the year, all solid companies pay
cashdividends.”

Although these implications are uncontrover-
sial, their automatic recognition is complex if we
rely on models based on lexical distance (or sim-
ilarity) between hypothesis and text, e.g., (Corley
and Mihalcea, 2005). Indeed, according to such

approaches, the hypothesesH1 and H2 are very
similar and seem to be similarly related toT1. This
suggests that we should study the properties and
differences of such two examples (negative and
positive) to derive more accurate entailment mod-
els. For example, if we consider the following en-
tailment:

T3 ⇒ H3?
T3 “All wild animals eat plants that have

scientifically proven medicinal proper-
ties.”

H3 “All wild mountain animals eat plants
that have scientifically proven medici-
nal properties.”

we note thatT3 is structurally (and somehow lex-
ically similar) toT1 andH3 is more similar toH1

than toH2. Thus, fromT1 ⇒ H1 we may extract
rules to derive thatT3 ⇒ H3.

The above example suggests that we should rely
not only on aintra-pair similarity betweenT and
H but also on across-pairsimilarity between two
pairs(T ′,H ′) and(T ′′,H ′′). The latter similarity
measure along with a set of annotated examples al-
lows a learning algorithm to automatically derive
syntactic and lexical rules that can solve complex
entailment cases.

In this paper, we define a new cross-pair similar-
ity measure based on text and hypothesis syntactic
trees and we use such similarity with traditional
intra-pair similarities to define a novel semantic
kernel function. We experimented with such ker-
nel using Support Vector Machines (Vapnik, 1995)
on the test tests of the Recognizing Textual En-
tailment (RTE) challenges (Dagan et al., 2005;
Bar Haim et al., 2006). The comparative results
show that (a) we have designed an effective way
to automatically learn entailment rules from ex-
amples and (b) our approach is highly accurate and
exceeds the accuracy of the current state-of-the-art
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models (Glickman et al., 2005; Bayer et al., 2005)
by about 4.4% (i.e. 63% vs. 58.6%) on the RTE 1
test set (Dagan et al., 2005).

In the remainder of this paper, Sec. 2 illustrates
the related work, Sec. 3 introduces the complexity
of learning entailments from examples, Sec. 4 de-
scribes our models, Sec. 6 shows the experimental
results and finally Sec. 7 derives the conclusions.

2 Related work

Although the textual entailment recognition prob-
lem is not new, most of the automatic approaches
have been proposed only recently. This has been
mainly due to the RTE challenge events (Dagan et
al., 2005; Bar Haim et al., 2006). In the following
we report some of such researches.

A first class of methods defines measures of
the distance or similarity betweenT and H ei-
ther assuming the independence between words
(Corley and Mihalcea, 2005; Glickman et al.,
2005) in a bag-of-word fashion or exploiting syn-
tactic interpretations (Kouylekov and Magnini,
2005). A pair(T,H) is then in entailment when
sim(T,H) > α. These approaches can hardly
determine whether the entailment holds in the ex-
amples of the previous section. From the point of
view of bag-of-word methods, the pairs(T1,H1)
and (T1,H2) have both the same intra-pair simi-
larity since the sentences ofT1 andH1 as well as
those ofT1 andH2 differ by a noun,insuranceand
cash, respectively. At syntactic level, also, we can-
not capture the required information as such nouns
are both noun modifiers:insurancemodifiescom-
paniesandcashmodifiesdividends.

A second class of methods can give a solution
to the previous problem. These methods generally
combine a similarity measure with a set of possi-
ble transformationsT applied over syntactic and
semantic interpretations. The entailment between
T andH is detected when there is a transformation
r ∈ T so thatsim(r(T ),H) > α. These trans-
formations are logical rules in (Bos and Markert,
2005) or sequences of allowedrewrite rulesin (de
Salvo Braz et al., 2005). The disadvantage is that
such rules have to be manually designed. More-
over, they generally model better positive implica-
tions than negative ones and they do not consider
errors in syntactic parsing and semantic analysis.

3 Challenges in learning from examples

In the introductory section, we have shown that,
to carry out automatic learning from examples, we

need to define a cross-pair similarity measure. Its
definition is not straightforward as it should detect
whether two pairs(T ′,H ′) and (T ′′,H ′′) realize
the samerewrite rules. This measure should con-
sider pairs similar when: (1)T ′ andH ′ are struc-
turally similar toT ′′ andH ′′, respectively and (2)
the lexical relations within the pair(T ′,H ′) are
compatible with those in(T ′′,H ′′). Typically, T

andH show a certain degree of overlapping, thus,
lexical relations (e.g., between the same words)
determineword movementsfrom T to H (or vice
versa). This is important to model the syntac-
tic/lexical similarity between example pairs. In-
deed, if we encode such movements in the syntac-
tic parse trees of texts and hypotheses, we can use
interesting similarity measures defined for syntac-
tic parsing, e.g., the tree kernel devised in (Collins
and Duffy, 2002).

To consider structural and lexical relation simi-
larity, we augment syntactic trees withplacehold-
erswhich identify linked words. More in detail:
- We detect links between wordswt in T that are
equal, similar, or semantically dependent on words
wh in H. We callanchorsthe pairs(wt, wh) and
we associate them withplaceholders. For exam-
ple, in Fig. 1, the placeholder2” indicates the
(companies,companies)anchor betweenT1 and
H1. This allows us to derive the word movements
between text and hypothesis.
- We align the trees of the two textsT ′ andT ′′ as
well as the tree of the two hypothesesH ′ andH ′′

by considering theword movements. We find a
correct mapping between placeholders of the two
hypothesisH ′ andH ′′ and apply it to the tree of
H ′′ to substitute its placeholders. The same map-
ping is used to substitute the placeholders inT ′′.
This mapping should maximize the structuralsim-
ilarity between the four trees by considering that
placeholders augment the node labels. Hence, the
cross-pair similarity computation is reduced to the
tree similarity computation.

The above steps define an effective cross-pair
similarity that can be applied to the example in
Fig. 1: T1 andT3 share the subtree in bold start-
ing with S → NP VP. The lexicals inT3 and H3

are quite different from thoseT1 andH1, but we
can rely on the structural properties expressed by
their bold subtrees. These are more similar to the
subtrees ofT1 andH1 than those ofT1 andH2,
respectively. Indeed,H1 and H3 share the pro-
ductionNP → DT JJ NN NNS while H2 andH3 do
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Figure 1: Relations between(T1,H1), (T1,H2), and(T3,H3).

not. Consequently, to decide if (T3,H3) is a valid
entailment, we should rely on the decision made
for (T1,H1). Note also that the dashed lines con-
necting placeholders of two texts (hypotheses) in-
dicate structurally equivalent nodes. For instance,
the dashed line between3 and b links the main
verbs both in the textsT1 andT3 and in the hy-
pothesesH1 andH3. After substituting3 with b
and 2 with a, we can detect ifT1 andT3 share
the bold subtreeS → NP2 VP 3 . As such subtree
is shared also byH1 andH3, the words within the
pair (T1,H1) are correlated similarly to the words
in (T3,H3).

The above example emphasizes that we need
to derive thebest mapping between placeholder
sets. It can be obtained as follows: letA′ andA′′

be the placeholders of(T ′,H ′) and(T ′′,H ′′), re-
spectively, without loss of generality, we consider
|A′| ≥ |A′′| and we align a subset ofA′ toA′′. The
best alignment is the one that maximizes the syn-

tactic and lexical overlapping of the two subtrees
induced by the aligned set of anchors.

More precisely, letC be the set of all bijective
mappings froma′ ⊆ A′ : |a′| = |A′′| to A′′, an
elementc ∈ C is a substitution function. We
define as the best alignment the one determined
by cmax = argmaxc∈C(KT (t(H ′, c), t(H ′′, i))+

KT (t(T ′, c), t(T ′′, i)) (1)

where (a)t(S, c) returns the syntactic tree of the
hypothesis (text)S with placeholders replaced by
means of the substitutionc, (b) i is the identity
substitution and (c)KT (t1, t2) is a function that
measures the similarity between the two treest1
and t2 (for more details see Sec. 4.2). For ex-
ample, thecmax between(T1,H1) and (T3,H3)
is {( 2’ , a’ ), ( 2” , a” ), ( 3 , b), ( 4 , c)}.

4 Similarity Models
In this section we describe how anchors are found
at the level of a single pair(T,H) (Sec. 4.1). The
anchoring process gives the direct possibility of
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implementing an inter-pair similarity that can be
used as a baseline approach or in combination with
the cross-pair similarity. This latter will be imple-
mented with tree kernel functions over syntactic
structures (Sec. 4.2).

4.1 Anchoring and Lexical Similarity
The algorithm that we design to find the anchors
is based on similarity functions between words or
more complex expressions. Our approach is in line
with many other researches (e.g., (Corley and Mi-
halcea, 2005; Glickman et al., 2005)).

Given the set of content words (verbs, nouns,
adjectives, and adverbs)WT andWH of the two
sentencesT andH, respectively, the set of anchors
A ⊂ WT ×WH is built using a similarity measure
between two wordssimw(wt, wh). Each element
wh ∈ WH will be part of a pair(wt, wh) ∈ A if:
1) simw(wt, wh) 6= 0
2) simw(wt, wh) = maxw′

t∈WT
simw(w′

t, wh)
According to these properties, elements inWH

can participate in more than one anchor and con-
versely more than one element inWH can be
linked to a single elementw ∈ WT .

The similaritysimw(wt, wh) can be defined us-
ing different indicators and resources. First of all,
two words are maximally similar if these have the
same surface formwt = wh. Second, we can use
one of the WordNet (Miller, 1995) similarities in-
dicated withd(lw, lw′) (in line with what was done
in (Corley and Mihalcea, 2005)) and different rela-
tion between words such as the lexical entailment
between verbs (Ent) and derivationally relation
between words (Der). Finally, we use the edit dis-
tance measurelev(wt, wh) to capture the similar-
ity between words that are missed by the previous
analysis for misspelling errors or for the lack of
derivationally forms not coded in WordNet.

As result, given the syntactic category
cw ∈ {noun, verb, adjective, adverb} and
the lemmatized formlw of a word w, the simi-
larity measure between two wordsw and w′ is
defined as follows:

simw(w, w
′
) =



































1 if w = w′∨
lw = l

w′ ∧ cw = c
w′∨

((lw, cw), (l
w′ , c

w′ )) ∈ Ent∨
((lw, cw), (l

w′ , c
w′ )) ∈ Der∨

lev(w, w′) = 1
d(lw, l

w′ ) if cw = c
w′ ∧ d(lw, l

w′ ) > 0.2
0 otherwise

(2)

It is worth noticing that, the above measure is not
a puresimilarity measure as it includes the entail-
ment relation that does not represent synonymy or
similarity between verbs. To emphasize the contri-
bution of each used resource, in the experimental

section, we will compare Eq. 2 with some versions
that exclude some word relations.

The above word similarity measure can be used
to compute the similarity betweenT and H. In
line with (Corley and Mihalcea, 2005), we define
it as:

s1(T, H) =

∑

(wt,wh)∈A

simw(wt, wh) × idf(wh)

∑

wh∈WH

idf(wh)
(3)

whereidf(w) is the inverse document frequency
of the word w. For sake of comparison, we
consider also the corresponding more classical
version that does not apply the inverse document
frequency

s2(T, H) =
∑

(wt,wh)∈A

simw(wt, wh)/|WH | (4)

¿From the above intra-pair similarities,s1

and s2, we can obtain the baselinecross-pair
similarities based on only lexical information:

Ki((T
′, H ′), (T ′′, H ′′)) = si(T

′, H ′) × si(T
′′, H ′′), (5)

wherei ∈ {1, 2}. In the next section we define a
novel cross-pair similarity that takes into account
syntactic evidence by means of tree kernel func-
tions.

4.2 Cross-pair syntactic kernels
Section 3 has shown that to measure the syn-
tactic similarity between two pairs,(T ′,H ′)
and (T ′′,H ′′), we should capture the number of
common subtrees between texts and hypotheses
that share the same anchoring scheme. The best
alignment between anchor sets, i.e. the best
substitutioncmax, can be found with Eq. 1. As the
corresponding maximum quantifies thealignment
degree, we could define a cross-pair similarity as
follows:

Ks((T
′, H ′), (T ′′, H ′′)) = max

c∈C

(

KT (t(H ′, c), t(H ′′, i))

+KT (t(T ′, c), t(T ′′, i)
)

, (6)

where asKT (t1, t2) we use the tree kernel func-
tion defined in (Collins and Duffy, 2002). This
evaluates the number of subtrees shared byt1 and
t2, thus defining an implicit substructure space.

Formally, given a subtree spaceF =
{f1, f2, . . . , f|F|}, the indicator functionIi(n)
is equal to 1 if the targetfi is rooted at
node n and equal to 0 otherwise. A tree-
kernel function overt1 and t2 is KT (t1, t2) =
∑

n1∈Nt1

∑

n2∈Nt2
∆(n1, n2), whereNt1 andNt2

are the sets of thet1’s andt2’s nodes, respectively.
In turn ∆(n1, n2) =

∑|F|
i=1 λl(fi)Ii(n1)Ii(n2),
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where0 ≤ λ ≤ 1 andl(fi) is the number of lev-
els of the subtreefi. Thusλl(fi) assigns a lower
weight to larger fragments. Whenλ = 1, ∆ is
equal to the number of common fragments rooted
at nodesn1 andn2. As described in (Collins and
Duffy, 2002), ∆ can be computed inO(|Nt1 | ×
|Nt2 |).

TheKT function has been proven to be a valid
kernel, i.e. its associatedGrammatrix is positive-
semidefinite. Some basic operations on kernel
functions, e.g. the sum, are closed with respect
to the set of valid kernels. Thus, if the maximum
held such property, Eq. 6 would be a valid ker-
nel and we could use it in kernel based machines
like SVMs. Unfortunately, a counterexample il-
lustrated in (Boughorbel et al., 2004) shows that
themaxfunction does not produce valid kernels in
general.

However, we observe that: (1)
Ks((T

′,H ′), (T ′′,H ′′)) is a symmetric func-
tion since the set of transformationC are always
computed with respect to the pair that has the
largest anchor set; (2) in (Haasdonk, 2005), it
is shown that when kernel functions are not
positive semidefinite, SVMs still solve a data
separation problem in pseudo Euclidean spaces.
The drawback is that the solution may be only
a local optimum. Therefore, we can experiment
Eq. 6 with SVMs and observe if the empirical
results are satisfactory. Section 6 shows that the
solutions found by Eq. 6 produce accuracy higher
than those evaluated on previous automatic textual
entailment recognition approaches.

5 Refining cross-pair syntactic similarity

In the previous section we have defined the intra
and the cross pair similarity. The former does not
show relevant implementation issues whereas the
latter should be optimized to favor its applicability
with SVMs. The Eq. 6 improvement depends on
three factors: (1) its computation complexity; (2)
a correct marking of tree nodes with placeholders;
and, (3) the pruning of irrelevant information in
large syntactic trees.

5.1 Controlling the computational cost

The computational cost of cross-pair similarity be-
tween two tree pairs (Eq. 6) depends on the size of
C. This is combinatorial in the size ofA′ andA′′,
i.e. |C| = (|A′|− |A′′|)!|A′′|! if |A′| ≥ |A′′|. Thus
we should keep the sizes ofA′ andA′′ reasonably
small.

To reduce the number of placeholders, we con-
sider the notion ofchunkdefined in (Abney, 1996),
i.e.,not recursive kernelsof noun, verb, adjective,
and adverb phrases. When placeholders are in a
single chunk both in the text and hypothesis we
assign them the same name. For example, Fig. 1
shows the placeholders2’ and 2” that are substi-
tuted by the placeholder2 . The placeholder re-
duction procedure also gives the possibility of re-
solving the ambiguity still present in the anchor
setA (see Sec. 4.1). A way to eliminate the am-
biguous anchors is to select the ones that reduce
the final number of placeholders.

5.2 Augmenting tree nodes with placeholders

Anchors are mainly used to extract relevant syn-
tactic subtrees between pairs of text and hypoth-
esis. We also use them to characterize the syn-
tactic information expressed by such subtrees. In-
deed, Eq. 6 depends on the number of common
subtrees between two pairs. Such subtrees are
matched when they have the same node labels.
Thus, to keep track of the argument movements,
we augment the node labels with placeholders.
The larger number of placeholders two hypothe-
ses (texts) match the larger the number of their
common substructures is (i.e. higher similarity).
Thus, it is really important where placeholders are
inserted.

For example, the sentences in the pair(T1,H1)
have related subjects2 and related main verbs
3 . The same occurs in the sentences of the pair
(T3,H3), respectivelya and b . To obtain such
node marking, the placeholders are propagated in
the syntactic tree, from the leaves1 to the target
nodes according to the head of constituents. The
example of Fig. 1 shows that the placeholder0

climbs up to the node governing all the NPs.

5.3 Pruning irrelevant information in large
text trees

Often only a portion of the parse trees is relevant
to detect entailments. For instance, let us consider
the following pair from the RTE 2005 corpus:

1To increase the generalization capacity of the tree ker-
nel function we choose not to assign any placeholder to the
leaves.
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T ⇒ H (id: 929)

T “Ron Gainsford, chief executive of the
TSI, said: ”It is a major concern to us
that parents could be unwittingly expos-
ing their children to the risk of sun dam-
age, thinking they are better protected
than they actually are.”

H “Ron Gainsford is the chief executive of
the TSI.”

Only the bold part ofT supports the implication;
the rest is useless and also misleading: if we used
it to compute the similarity it would reduce the im-
portance of the relevant part. Moreover, as we nor-
malize the syntactic tree kernel (KT ) with respect
to the size of the two trees, we need to focus only
on the part relevant to the implication.

The anchored leaves are good indicators of rel-
evant parts but also some other parts may be very
relevant. For example, the function wordnotplays
an important role. Another example is given by the
word insurancein H1 and mountain in H3 (see
Fig. 1). They support the implicationT1 ⇒ H1

andT1 ⇒ H3 as well ascashsupportsT1 ; H2.
By removing these words and the related struc-
tures, we cannot determine the correct implica-
tions of the first two and the incorrect implication
of the second one. Thus, we keep all the words that
are immediately related to relevant constituents.

The reduction procedure can be formally ex-
pressed as follows: given a syntactic treet, the set
of its nodesN(t), and a set of anchors, we build
a treet′ with all the nodesN ′ that are anchors or
ancestors of any anchor. Moreover, we add tot′

the leaf nodes of the original treet that are direct
children of the nodes inN ′. We apply such proce-
dure only to the syntactic trees of texts before the
computation of the kernel function.

6 Experimental investigation
The aim of the experiments is twofold: we show
that (a) entailment recognition rules can be learned
from examples and (b) our kernel functions over
syntactic structures are effective to derive syntac-
tic properties. The above goals can be achieved by
comparing the different intra and cross pair simi-
larity measures.

6.1 Experimental settings
For the experiments, we used the Recognizing
Textual Entailment Challenge data sets, which we
name as follows:
- D1, T1 andD2, T2, are the development and
the test sets of the first (Dagan et al., 2005) and
second (Bar Haim et al., 2006) challenges, respec-
tively. D1 contains 567 examples whereasT1,

D2 andT2 have all the same size, i.e. 800 train-
ing/testing instances. The positive examples con-
stitute the 50% of the data.
- ALL is the union ofD1, D2, andT1, which we
also split in 70%-30%. This set is useful to test if
we can learn entailments from the data prepared in
the two different challenges.
- D2(50%)′ andD2(50%)′′ is a random split of
D2. It is possible that the data sets of the two com-
petitions are quite different thus we created this
homogeneoussplit.

We also used the following resources:
- The Charniak parser (Charniak, 2000) and the
morpha lemmatiser (Minnen et al., 2001) to carry
out the syntactic and morphological analysis.
- WordNet 2.0 (Miller, 1995) to extract both the
verbs in entailment,Ent set, and the derivation-
ally related words,Der set.
- The wn::similarity package (Pedersen et
al., 2004) to compute the Jiang&Conrath (J&C)
distance (Jiang and Conrath, 1997) as in (Corley
and Mihalcea, 2005). This is one of the best fig-
ure method which provides a similarity score in
the [0, 1] interval. We used it to implement the
d(lw, lw′) function.
- A selected portion of the British National Cor-
pus2 to compute the inverse document frequency
(idf ). We assigned the maximumidf to words not
found in the BNC.
- SVM-light-TK3 (Moschitti, 2006) which en-
codes the basic tree kernel function,KT , in SVM-
light (Joachims, 1999). We used such software
to implementKs (Eq. 6), K1, K2 (Eq. 5) and
Ks + Ki kernels. The latter combines our new
kernel with traditional approaches (i ∈ {1, 2}).

6.2 Results and analysis
Table 1 reports the results of different similarity
kernels on the different training and test splits de-
scribed in the previous section. The table is orga-
nized as follows:

The first 5 rows (Experiment settings) report the
intra-pair similarity measures defined in Section
4.1, the 6th row refers to only theidf similarity
metric whereas the following two rows report the
cross-pair similarity carried out with Eq. 6 with
(Synt Trees with placeholders) and without (Only
Synt Trees) augmenting the trees with placehold-
ers, respectively. Each column in theExperiment

2http://www.natcorp.ox.ac.uk/
3SVM-light-TK is available athttp://ai-nlp.info

.uniroma2.it/moschitti/
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Experiment Settings
w = w′ ∨ lw = l

w′ ∧ cw = c
w′

√ √ √ √ √ √ √ √

cw = c
w′ ∧ d(lw, l

w′ ) > 0.2
√ √ √ √ √ √

((lw , cw), (l
w′ , c

w′ )) ∈ Der
√ √ √ √

((lw , cw), (l
w′ , c

w′ )) ∈ Ent
√ √ √ √

lev(w, w′) = 1
√ √ √

idf
√ √ √ √ √ √

Only Synt Trees
√

Synt Trees with placeholders
√

Datasets
“Train:D1-Test:T1” 0.5388 0.5813 0.5500 0.5788 0.5900 0.5888 0.6213 0.6300
“Train:T1-Test:D1” 0.5714 0.5538 0.5767 0.5450 0.5591 0.5644 0.5732 0.5838
“Train:D2(50%)′-Test:D2(50%)′′” 0.6034 0.5961 0.6083 0.6010 0.6083 0.6083 0.6156 0.6350
“Train:D2(50%)′′ -Test:D2(50%)′” 0.6452 0.6375 0.6427 0.6350 0.6324 0.6272 0.5861 0.6607
“Train:D2-Test:T2” 0.6000 0.5950 0.6025 0.6050 0.6050 0.6038 0.6238 0.6388
Mean 0.5918 0.5927 0.5960 0.5930 0.5990 0.5985 0.6040 0.6297

(± 0.0396 ) (± 0.0303 ) (± 0.0349 ) (± 0.0335 ) (± 0.0270 ) (± 0.0235 ) (± 0.0229 ) (± 0.0282 )
“Train:ALL(70%)-Test:ALL(30%)” 0.5902 0.6024 0.6009 - 0.6131 0.6193 0.6086 0.6376
“Train:ALL-Test:T2” 0.5863 0.5975 0.5975 0.6038 - - 0.6213 0.6250

Table 1:Experimental results of the different methods over different test settings

settingsindicates a different intra-pair similarity
measure built by means of a combination of basic
similarity approaches. These are specified with the
check sign

√
. For example, Column 5 refers to a

model using: the surface word form similarity, the
d(lw, lw′) similarity and theidf .

The next 5 rows show the accuracy on the data
sets and splits used for the experiments and the
next row reports the average and Std. Dev. over
the previous 5 results. Finally, the last two rows
report the accuracy on ALL dataset split in 70/30%
and on the whole ALL dataset used for training
and T2 for testing.

¿From the table we note the following aspects:
- First, the lexical-based distance kernelsK1 and
K2 (Eq. 5) show accuracy significantly higher than
the random baseline, i.e. 50%. In all the datasets
(except for the first one), thesimw(T,H) simi-
larity based on the lexical overlap (first column)
provides an accuracy essentially similar to the best
lexical-based distance method.
- Second, the dataset “Train:D1-Test:T1” allows
us to compare our models with the ones of the first
RTE challenge (Dagan et al., 2005). The accuracy
reported for the best systems, i.e. 58.6% (Glick-
man et al., 2005; Bayer et al., 2005), is not signif-
icantly different from the result obtained withK1

that uses theidf .
- Third, the dramatic improvement observed in
(Corley and Mihalcea, 2005) on the dataset
“Train:D1-Test:T1” is given by theidf rather than
the use of the J&C similarity (second vs. third
columns). The use of J&C with theidf decreases
the accuracy of theidf alone.
- Next, our approach (last column) is significantly
better than all the other methods as it provides the
best result for each combination of training and
test sets. On the “Train:D1-Test:T1” test set, it

exceeds the accuracy of the current state-of-the-
art models (Glickman et al., 2005; Bayer et al.,
2005) by about 4.4 absolute percent points (63%
vs. 58.6%) and 4% over our best lexical simi-
larity measure. By comparing the average on all
datasets, our system improves on all the methods
by at least 3 absolute percent points.
- Finally, the accuracy produced bySynt Trees with
placeholdersis higher than the one obtained with
Only Synt Trees. Thus, the use of placeholders
is fundamental to automatically learn entailments
from examples.

6.2.1 Qualitative analysis
Hereafter we show some instances selected

from the first experiment “Train:T1-Test:D1”.
They were correctly classified by our overall
model (last column) and miss-classified by the
models in the seventh and in the eighth columns.
The first is an example in entailment:

T ⇒ H (id: 35)

T “Saudi Arabia, the biggest oil pro-
ducer in the world, was once a sup-
porter of Osama bin Laden and his
associates who led attacks against the
United States.”

H “Saudi Arabia is the world’s biggest oil
exporter.”

It was correctly classified by exploiting examples
like these two:

T ⇒ H (id: 929)

T “Ron Gainsford, chief executive of the
TSI, said: ...”

H “Ron Gainsford is the chief executive of
the TSI.”

T ⇒ H (id: 976)

T “Harvey Weinstein, the co-chairman of
Miramax, who was instrumental in pop-
ularizing both independent and foreign
films with broad audiences, agrees.”

H “Harvey Weinstein is the co-chairman
of Miramax.”
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The rewrite rule is:”X, Y, ...” implies ”X is Y” .
This rule is also described in (Hearst, 1992).

A more interesting rule relates the following
two sentences which are not in entailment:

T ; H (id: 2045)
T “Mrs. Lane, who has been a Director

since 1989, is Special Assistant to the
Board of Trustees and to the President
of Stanford University.”

H “Mrs. Lane is the president of Stanford
University.”

It was correctly classified using instances like the
following:

T ; H (id: 2044)

T “Jacqueline B. Wender is Assistant to
the President of Stanford University.”

H “Jacqueline B. Wender is the President
of Stanford University.”

T ; H (id: 2069)

T “Grieving father Christopher Yavelow
hopes to deliver one million letters to
the queen of Holland to bring his chil-
dren home.”

H “Christopher Yavelow is the queen of
Holland.”

Here, the implicit rule is:”X (VP (V ...) (NP (to Y)
...)” does not imply”X is Y” .

7 Conclusions
We have presented a model for the automatic
learning of rewrite rules for textual entailments
from examples. For this purpose, we devised a
novel powerful kernel based on cross-pair simi-
larities. We experimented with such kernel us-
ing Support Vector Machines on the RTE test
sets. The results show that (1) learning entailments
from positive and negative examples is a viable ap-
proach and (2) our model based on kernel meth-
ods is highly accurate and improves on the current
state-of-the-art entailment systems.

In the future, we would like to study approaches
to improve the computational complexity of our
kernel function and to design approximated ver-
sions that are valid Mercer’s kernels.
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