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1. Introduction 

Parser development is generally viewed as a primarily linguis- 
tic enterprise. A grammarian examines sentences, skillfully 
extracts the linguistic generalizations evident in the data, and 
writes grammar rules which cover the language. The gram- 
marian then evaluates the performance of the grammar, and 
upon analysis of the errors made by the grammar-based parser, 
carefully refines the rules, repeating this process, typically 
over a period of several years. 

This grammar refinement process is extremely time- 
consuming and difficult, and has not yet resulted in a grammar 
which can be used by a parser to analyze accurately a large 
corpus of unrestricted text. As an alternative to writing gram- 
mars, one can develop corpora of hand-analyzed sentences 
(treebanks) with significantly less effort 1. With the avail- 
ability of treebanks of annotated sentences, one can view NL 
parsing as simply treebank recognition where the methods 
from statistical pattern recognition can be brought to bear. 

This approach divides the parsing problem into two separate 
tasks: treebanking, defining the annotation scheme which will 
encode the linguistic content of the sentences and applying 
it to a corpus, and treebank recognition, generating these 
annotations automatically for new sentences. 

The treebank can contain whatever information is deemed 
valuable by the treebanker, as long as it is annotated according 
to some consistent scheme, probably one which represents 
the intended meaning of the sentence. The goal of treebank 
recognition is to produce the exact same analysis of a sentence 
that the treebanker would generate. 

As treebanks became available during the past five years, 
many "statistical models" for parsing a sentence w~ of n 
words still relied on a grammar. Statistics were used to sim- 
ply rank the parses that a grammar allowed for a sentence. 
Unfortunately, this requires the effort of grammar creation 
(whether by hand or from data) in addition to the Treebank 
and suffers from the coverage problem that the correct parse 

*E Jelinek and R. Mercer, formerly of IBM, are now will, John Hopkins 
University and Renaissance Technologies, Inc., respectively. 

1 In addition, these annotated corpora have a more permanent value for 
future research use than particular grammars 

may not be allowed by the grammar. Parsing with these mod- 
els is to determine the most probable parse, T*, from among 
all the parses, denoted by Ta(w~), allowed by the grammar 
G for the sentence w~: 

T* = a rgmax  p(T [w~). (1) 
T6To(w~) 

The a posteriori probability of a tree T given the sentence 
w? is usually derived by Bayes rule from a generative model, 
denoted by p(T, w~), based on the grammar. For example, 
probabilistic CFGs (P-CFG) can be estimated from a treebank 
to construct such a model [I, 2]. 

But there is no reason to require that a grammar be used to 
construct a probabilistic model p(T [ w~) that can be used for 
parsing. In this paper, we present a method for contructing a 
model for the conditional distribution of trees given a sentence 
without the need to define a grammar. So with this new 
viewpoint parsing avoids the step of extracting a grammar 
and is merely the search of the most probable tree: 

T* = arg maxp(Tlw~) (2) 
T6T(w~) 

where the maximization is over all trees that span the n- 
word sentence. While others have attempted to build parsers 
from treebanks using correctly tagged sentences as input, we 
present in this paper the first results we know of in building 
a parser automatically that produces the surface structure di- 
rectly from a word sequence and does not require a correct 
sequence of tags. 

The probabilistic models we explore are conditional on the 
derivational order of the parse tree. In [4], this type of model 
is referred to as a history-based grammar model where a (de- 
terministic) leftmost derivation order is used to factor the 
probabilistic model. In this work, we use a set of bottom- 
up derivations 2 of parse trees. We explore the use of a self- 
organized hidden derivational model as well as a deterministic 
derivational model to assign the probability of a parse tree. 

In the remaining sections, we discuss the derivation history 
model, the parsing model, the probabilistic models for node 

2Traditional use of derivation order identifies the order of application of 
grammar rules; in this work, we extend the notion to identify the order in 
which edges in a tree are created. 
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I I I Figure 1: The extensions corresponding to a constituent for a 
phrase such as "the Enter key". 

features, the training algorithms, the experimental results, and 
our colaclusions. 

Me Enter key 

Figure2: Representation of constituent and labeling of exten- 
sions. 

2. A d e r i v a t i o n  history model 
Current treebanks are a collection of n-ary branching trees, 
with each node in a tree labeled by either a non-terminal label 
or a part-of-speech label (called a tag). Usually, grammarians 
elevate constituents to the status of elementary units in a parse, 
especially in the case of rewrite-rule grammars where each 
rewrite rule defines a legal constituent. However, if a parse 
tree is interpreted as a geometric pattern, a constituent is no 
more than a set of edges which meet at the same tree node. In 
Figure 1, the noun phrase,"N", which spans the tags "AT VVC 
NN 1", which correspond to an article, a command verb, and 
a singular noun, respectively, consists of an edge extending 
to the right from "AT," an edge extending straight up from 
"VVC," and an edge extending to the left from "NNI" (see 
Figure 1). 

We introduce a new definition for a derivation of a parse tree 
by using Figure 2 which gives a subtree used in our parser for 
representing the noun phrase "the Enter key". We associate 
with every node in the parse tree two features, a name which 
is either a tag or a non-terminal label, and an extension which 
indicates whether the edge going to its parent is going right, 
left, up, or unary. Unary corresponds to a renaming of a non- 
terminal. By specifying the two features (name and extension) 
for each node we can reconstruct the parse tree. The order 
of the nodes in which we specify these two features defines 
the derivation order. We only consider bottom-up derivations. 
In a bottom-up derivation, a node is named first, it may be 
extended only after it's named, and it is not named until all 
of the nodes beneath it are extended. Naming a node maybe 
a tagging or labeling action depending on whether or not the 
node is a leaf in the parse tree. 

Using Figure 2, one derivation is to tag the first word "the" 
as "AT", then to extend it "right", then to tag the third word 
"key" as "NNI", then to tag the second word "Enter" as 
"VVC" (command verb), then to extend the resulting node by 
a "unary", then to label the resulting node as "Nn" (computer 
noun), then to extend the resulting node "up", then to extend 
the "NNi" node by a "left" to yield a node that spans the 
whole phrase "the Enter key". By our definition of bottom-up 
derivation, it's only at this point in the derivation that we can 
label the node that spans the whole phrase as "N", and then 
extend it "left" as is implied in Figure 2. Using the node 
numbering scheme in Figure 2, we have at the beginning of 
this derivation the words with the nodes {2, 4, 5} that have 
unassigned names. These are the active nodes at this point. 
Suppose that node 2 is picked and then tagged "AT". That 
corresponds to the derivation [2]; at this point, only nodes 
{2, 4, 5} are active. If we pick node 2 again, then an extension 
step is required and the derivation is [22]. The derivation 
presented at the beginning of this paragraph corresponds to 
the sequence of nodes [ 2 2 5 4 4 3 3 5 1 1 ] .  

To derive the tree in Figure I when we are given the three-tag 
sequence, there are 6 possible derivations. We could start by 
extending any of the 3 tags, then we have either of 2 choices 
to extend, and we extend the one remaining choice, then we 
name the resulting node. This leads to 3x2xl=6 derivations 
for that tree. 

If we use a window of 1, then only a single derivation is per- 
mitted and we call it the bottom-up leftmost derivation. In our 
example, this leftmost derivation would be [ 2 2 4 4 3 3 5 5 1 ] .  
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3. The  Pars ing  Model  

We represent a derivation of a parse tree by the sequence of 
nodes as they are visited by the derivation, denoted by d. 
Denote by ~ the i-th node of the derivation d. Denote by 
ld, the nanm feature for a node selected at the i-th step in 
the derivation and by ed~ its extension. A parse derivation is 
constructed' by the following 2-step algorithm: 

• select which node to extend among active nodes using 
p( active = di [context), 

• then either 

- assign a name to the selected node whether it is 
tagging or labelling a node (constituent) with a non- 
terminal label using p(la, [ context), or 

- extend the selected node (which adds an edge to 
the parse graph) using p(ed, [ contezt). 

If the node selected has its name identified then an extension 
step is performed otherwise a naming step is performed. Note 
that only extension steps change which nodes are active. 

We have a different probabilistic model for each type of step 
in a parse derivation. The probabilistic models do not use 
the whole derivation history as context; but rather a five node 
window around the node in question. We will discuss this in 
more detail later on. 

The probability of a derivation of a parse tree is the product 
of the probabilities of each of the feature value assignments 
in that derivation and the probability of each active node 
selection made in that derivation: 

p(T, dlw ) = IX 
X<j<Idl 

wh~e 

= p(active = dj I conte t(di-1))p(wj I  ont  t(dl)) 

where xj is either the name lj of node dj or its extension ej 

and d~ is the derivation up to thej-th step. The probability of 
a parse tree given the sentence is the sum over all derivations 
of that parse tree: 

p(T I w~) = ~ p ( T ,  d l w~) 
d 

Due to computational complexity, we restrict the number of 
bottom-up derivations we consider by using a window of n 
active nodes. For a window of 2, we can only choose either 
of the two leftmost nodes in the above process. So for the 
parse in Figure 1, we only get 4 derivations with a derivation 
window of 2. 

Eesh charscter used by the computer Is listed 

Figure 3: Treebank analysis encoded using feature values. 
Each internal node contains, from top to bottom, a label, 
word, tag, and extension value, and each leaf node contains a 
word, tag, and extension value. 

4. Probabi l is t ic  Mode l s  for  Node  Features  

Node Representation We do not use all the subtree infor- 
mation rooted at a node N to condition our probabilistic mod- 
els. But rather we have an equivalence class defined by the 
node name (if it's available), we also have for constituent 
nodes, a word, along with its corresponding part-of-speech 
tag, that is selected from each constituent to act as a lexical 
representative. The lexical representative from a constituent 
corresponds loosely to the linguistic notion of a head word. 
For example, the lexical representative of a noun phrase is the 
rightmost noun, and the lexical representative of a verb phrase 
is the leftmost non-auxiliary verb. However, the correlation 
to linguistic theory ends there. The deterministic rules (one 
per label) which select the representative word from each con- 
stituent were developed in the better part of an hour, in keep- 
ing with the philosophy of avoiding excessive dependence 
on carefully crafted rule-based methods. Figure 3 illustrates 
the word and tag features propagated along the parse tree for 
an example sentence. Each internal node is represented as a 
4-feature vector: label, head word, head tag, and extension. 

Notation In the remainder of this section, the following no- 
tational scheme will be used. wi and ti refer to the word 
corresponding to the ith token in the sentence mad its part-of- 
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speech tag, respectively. N ~ refers to the 4-tuple of feature 
values at the kth node in the current parse state, where the 
nodes are numbered from left to right. N/~, N~, Nt k, and 
N~ refer, respectively, to the label, word, tag, and extension 
feature values at the node k. N ¢j refers to the jth child of 
the current node where the leftmost child is child 1. N e-~ 
refers to the jth child of the current node where the rightmost 
child is child 1. The symbol Q,te refers to miscellaneous 
questions about the current state of the parser, such as the 
number of nodes in the sentence and the number of children 
of a particular node. 

The Tagging Model The tag feature value prediction is con- 
ditioned on the two words to the left, the two words to the 
right, and all information at two nodes to the left and two 
nodes to the right. 

p(ti [ contezt) ~ p(t~ [ w~wi-twi-2wi+twi+2t~-tti-2 
t~+lti+2Nk-l N~-2N~+t N~+ 2) 

The Extension Model The extension feature value predic- 
tion is conditioned on the node information at the node being 
extended, all information from two nodes to the left and two 
nodes to the right, and the two leftmost children and the two 
rightmost children of the current node (these will be redundant 
if there are less than 4 children at a node). 

v(N  I  o=te t) 

The Label Model The label feature value prediction is con- 
ditioned on questions about the presence of selected words in 
the constituent, all information from two nodes to the left and 
two nodes to the right, and the two leftmost children and the 
two rightmost children of the current node. 

p(N~ I contezt) ~ p(N~ I Q ~Nk-INk-2Nk+INk+2N¢I  
NC~NC-~NC-~) 

questions about the history. We have described in earlier 
papers, [6, 4], how we use mutual information clustering of 
words to define a set of classes on words that form the basis 
of the binary questions about words in the history. We also 
have defined by the same mutual information on the bigram 
tag distribution classes for binary questions on tags. We have 
identified by hand a set of classes for the binary questions on 
the labels. The decision trees are grown using the standard 
methods described in [5]. In the case of hidden derivations, 
the forward-backward algorithms can be used to get partial 
counts for the different events used in building the decision 
trees. 

5. Expectation Maximization Training 

The proposed history-based model cannot be estimated by 
direct frequency counts because the model contains a hidden 
component: the derivation model. The order in which the 
treebank parse trees were constructed is not encoded in the 
treebank, but the parser assigns probabilities to specific de- 
rivations of a parse tree. A forward-backward (FB) algorithm 
can be easily defined to compute a posteriori probabilities 
for. the states. These probabilities can then be used to de- 
fine counts for the different events that are used to build the 
decision trees. 

To train the parser, all legal derivations of a parse tree (ac- 
cording to the derivational window constraint) are computed. 

~ p ( N ~ [  N ~ N t k N p N ~ N ~ - i N  ~-2 Each derivation can be viewed as a path from a common ini- 
Nk+iNk+2NC~NC~NC-lNC-~}ial state, the words in the sentence, to a common final state, 

the completed parse tree. These derivations form a lattice 
of states, since different derivations of the same parse tree 
inevitably merge. For instance, the state created by tagging 
the first word in the sentence and then the second is the same 
state created by tagging the second word and then the first. 
These two derivations of this state have different probability 
estimates, but the state can be viewed as one state for future 
actions, since it represents a single history. 

The Derivation Model In initial experiments, the ac- 
tive node selection process was modelled by a uniform 
(p(active) = 1/n) model with n = 2. Our intuition was that 
by parametrizing the choice of which active node to process, 
we could improve the parser by delaying labeling and exten- 
sion steps when the partial parse indicates ambiguity. We 
used the current node information and the node information 
available within the five node window. 

5.1. Decision Trees and the Forward-Backward 
Algorithm 

Each leaf of decision tree represents the distribution of a class 
of histories. The parameters of these distributions can be 
updated using the F-B algorithm. 

Initially, the models in the parser are assumed to be uniform. 
Accordingly, each event in each derivation contributes equally 
to tlm process which selects which questions to ask about 
the history in order to predict each feature value. However, 

k k ~ 1 k ~ ~+1 ~ 2 t h e u n i f ° r l n m ° d e l i s  certainly not a v e r y  good model of 
p(active I contezt) ,~ p(active [ Q "N N "- N - N N "-~ )feature value assignments. And, since some derivations of 

a parse tree are better than others, the events generated by 
Statistical Decision Trees The above probability distribu- the better derivations should contribute more to the decision 
tion are each modeled as a statistical decision tree with binary tree-growing process. The decision trees grown using the 
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uniform as!;umption collectively form a parsing model, MI. 
The F-B count for each event in the training corpus using 
MI can be used to grow a new set of decision trees, M2. 
The decision trees in M2 are constructed in a way which 
gives more weight to the events which contributed most to the 
probability of the corpus. However, there is no guarantee that 
M2 is a betl.er model than MI. It isn't even guaranteed that the 
probability of the training corpus according to M2 is higher 
than the probability according to MI. However, based on 
experimental results, the use of F-B counts in the construction 
of new decision trees is effective in acquiring a better model 
of the data. 

Thereis no >way of knowing, apriori, which combination of the 
previously mentioned applications of the forward-backward 
algorithm will produce the best model. After initial exper- 
imentation, the following sequence of training steps proved 
effective: 

Grow initial decision trees (MI) based on uniform mod- 
els 

Create M2 by pruning trees in MI to a maximum depth 
of 10. 

Grow decision trees (M3) from F-B counts from M2. 

Perform F-B reestimation for leaves of decision trees in 
M3. 

Smoothing Decision Trees Once the leaf distributions for a, 
set of decision trees are fixed, the model must be smoothed us- 
ing held-out data to avoid overtraining on the original training 
corpus. 

Each node in a decision tree potentially assigns a different 
distribution to the set of future values predicted by that tree. 
The problem of smoothing is to decide which combination of 
the distributions along a path from a leaf to the root will result 
in the most accurate model. The decision trees are smoothed 
by assigning a parameter to each node. This parameter repre- 
sents the extent to which the distribution at that node should 
be trusted with respect to the distribution at the parent node. 

6. Experimental Results 
Task Domain We have chosen computer manuals as a task 
domain. We picked the most frequent 3000 words from 10 
manuals as our vocabulary. We then extracted about 35,000 
sentences covered by this vocabulary3 from40,000,000 words 
of computer manuals. This corpus was treebanked by the 
University of Lancaster. The Treebank uses 17 non-terminal 
labels and 240 tags4. 

actual vocabulary is around 7,000 words when we include the many 
symbols, formulas, and numbers that occur in t l~e  manuals 

*we have projected the tag set to 193 

Table 1: Distribution of sentences, average wordslsentence, 
and average number of non-terminals per sentence for the 
blind test set. 

A parse produced by the parser is judged to be correct under 
the "Exact Match" criterion if it agrees with the Treebank 
parse structurally and all NT labels and tags agree5 

Length 

Experiment 1 The parser using a stack decoding search 
which produced 1 parse for each sentence, and this parse was 
compared to the treebank parse for that sentence. On this test 
set, the parser produced the correct parse, i.e. a parse which 
matched the treebank parse exactly, for 38% of the sentences. 
Ignoring part-of-speech tagging errors, it produced the correct 
parse tree for 47% of the sentences. Further, the correct parse 
tree is present in the top 20 parses produced by the parser for 
64% of the sentences. 

Words/ 
Sentence 

# of 
Sentences 

No other parsers have reported results on exactly matching 
treebank parses, so we also evaluated on the crossing brack- 
ets measure from [2], which represents the percentage of sen- 
tences for which none of the constituents in a parser's analysis 
violate the constituent boundaries of the treebank parse. The 
crossing-brackets measure is a very weak measure of parsing 
accuracy, since it does not verify prepositional phrase attach- 
ment or any other decision which is indicated by omitting 
structure. However, based on analysis of parsing errors, in 
the current state-of-the-art, increases in the crossing brackets 
measure appear to correlated with improvements in overall 
parsing performance. This may not remain true as parsers 
become more accurate. 

Constituent1 
Sentence 

The 1100 sentence corpus that we used in this first experi- 
ment was one of the test corpora used in several experiments 
reported in [2]. The grammar-based parser discussed in [2] 
uses a P-CFG based on a rule-based grammar developed by 
a grammarian by examining the same training set used above 
over a period of more than 3 years. This P-CFG parser pro- 
duced parses which passed the crossing brackets test for 69% 
of the 1100 sentences. Our decision tree hidden derivation 
parser improves upon this result, passing the crossing brackets 
test for 78% of the sentences. The details of this experiment 
are discussed in [9]. 

% sample of 5000 sentences (a training set of 4000, a development 
test of 500, and an evaluation test of 500) is available by request from 
roukos Q watson.ibm.com. 



Length Treebank 
Consistency 

1-10 69.1% 
1-15 64.9% 
1-23 58.3% 
1-30 - - -  
1-oo 52.5% 

Exact top 20 Crossing 
Match Bracket 
55.9% 80.8% 91.5% 
51.7% 78.7% 86.2% 
41.9% 68.9% 76.5% 
38.1% 64.0% 70.9% 
34.9% 59.1% 65.7% 

# Sentencesin E x a c t  Top 20 
Training D ~ a  Mmch 
15000 34.2 61.1 
20000 37.4 64.8 
25000 37 67.7 
30000 38.1 68.4 
34000 38.9 73 

Table 2: Performance of leftmost bottom-up derivation for 
Computer Manuals. 

Exper imen t  2 By using a derivation window of 1, we find 
that Exact Match accuracy decreases by two percentage points 
with a significant reduction in computational complexity. Us- 
ing the simpler single derivation model, we built a new set of  
models. We also combined the naming and extension steps 
into one, improved some of  our processing of  the casing of  
words, and added a few additional questions. Using these 
models, we ran on all sentences in our blind test set. Ta- 
ble 1 gives some statistics a function of  sentence length on 
our test set of  1656 sentences. Table 2 gives the parser's 
performance e. In Table 2, we show a measure of treebank 
consistency. During treebanking, a random sample of  about 
1000 sentences was treebanked by two treebankers. The per- 
centage of  sentences for which they both produce the same 
exact trees (tags included) is shown as Treebank Consistency 
in Table 2. We also show the percentage of  sentences that 
match the Treebank, the percentage where the Treebank parse 
is among the top 20 parses produced by the parser, and the 
percentage of  sentences without a crossing bracket. Currently, 
the parser parses every third sentence exactly as a treebanker 
and is about 15 percentage points below what the treebankers 
agree on when they are parsing in production mode. A more 
carefully treebanked test set may be necessary in the future as 
we improve our parser. 

We also explored the effect of  training set size on parsing 
performance with an earlier version of  the parsing model. 
Table 3 shows the Exact Match score for sentences of  23 
words or less. From this data, we see that we have a small 
improvement in accuracy by doubling the training set size 
from 15k to 30k sentences. 

/ 

7.  C o n c l u s i o n  

We presented a "linguistically" naive parsing model that has 
a parsing accuracy rate that we believe is state-of-the-art. We 
anticipate that by refining the "linguistic" features that can be 
examined by the decision trees, we can improve the parser's 
performance significantly. Of  particular interest are linguistic 

6 While we prefer to use Exact Match for automatic parsing, we computed 
the PARSEVAL performance measures to be: 80% Recall, 81% Precision, 
and 10% Crossing Brackets on the unseen test set of Experiment 2. Note: On 
this test set, 65.7% of the sentences are parsed without any crossing brackets. 

Table 3: Performance as a function of  Training Set Size 

features that may be helpful in conjunction and other long 
distance dependency. We are currently investigating some 
mehtods for building in some of  these features. 
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