
RECENT IMPROVEMENTS IN THE CMU SPOKEN LANGUAGE
UNDERSTANDING SYSTEM

Wayne Ward and Sunil Issar

School of Computer Science
Carnegie Mellon University

Pittsburgh PA 15217

ABSTRACT
We have been developing a spoken language system to recognize
and understand spontaneous speech. It is difficult for such systems
to achieve good coverage of the lexicon and grammar that subjects
might use because spontaneous speech often contains disfluencies
and ungrammatical constructions. Our goal is to respond appropri-
ately to input, even though coverage is not complete. The natural
language component of our system is oriented toward the extraction
of information relevant to a task, and seeks to directly optimize the
correctness of the extracted information (and therefore the system
response). We use a flexible frame-based parser, which parses as
much of the input as possible. This approach leads both to high
accuracy and robustness. We have implemented a version of this
system for the Air Travel Information Service (ATIS) task, which is
being used by several ARPA-funded sites to develop and evaluate
speech understanding systems. Users are asked to perform a task
that requires getting information from an Air Travel database. In
this paper, we describe recent improvements in our system resulting
from our efforts to improve the coverage given a limited amount of
training data. These improvements address a number of problems
including generating an adequate lexicon and grammar for the rec-
ognizer, generating and generalizing an appropriate grammar for the
parser, and dealing with ambiguous parses.

1. INTRODUCTION
Understanding spontaneous speech presents several problems that
are not found either in recognizing read speech or in parsing written
text. Since the users are not familiar with the lexicon and grammar
used by the system, it is very difficult for a speech understanding sys-
tem to achieve good coverage of the lexicon and grammar that sub-
jects might use. Spontaneous speech often contains ungrammatical
constructions, stutters, filled pauses, restarts, repeats, interjections,
etc. This causes problems both for the recognizer and the parser.

Stochastic language models tend to produce more robust recognition
than grammar based models. They can be smoothed to allow for
unseen word sequences and their scope is short enough to "get back
on track" after an error. The parsing and understanding component
also must be robust to the phenomena in spontaneous speech and to
recognition errors. Even though the speech is disfluent and gramat-
ically ill-formed, the relevant information is still consistent most of
the time. We therefore try to model the information in an utterance
rather than its grammatical structure. The natural language compo-
nent of our system is oriented toward the extraction of information
relevant to a task, and seeks to directly optimize the correctness of the
extracted information (and therefore the system response). We use
a flexible frame-based parser, which parses as much of the input as
possible. This approach leads both to high accuracy and robustness.

We have implemented a version of this system for the ARPA Air
Travel Information Service (ATIS) task. Users are asked to perform
a task that requires getting information from an Air Travel database.
They must interact with the system by voice to find a solution. In
this paper, we describe recent improvements in our system resulting
from our efforts to increase the coverage given a limited amount of
training data. These improvements address a number of problems
mentioned above:

• Generating and generalizing an appropriate grammar for the
parser

* Generating a lexicon and language model for the recognizer

• Resolving ambiguous parses with context

In addition, we improved the basic performance of the parser and
added a rejection mechanism.

2. SYSTEM OVERVIEW
The CMU spoken language understanding system is called Phoenix,
and has been described in previous papers [4, 3]. It is neccessary
here to give a brief description of the system in order to understand
the context within which we were making changes.

Our system has a loose coupfing between the recognition and parsing
stages. The recognizer uses stochastic language models to produce
a single word string hypothesis. This hypothesis is then passed to a
parsing module which uses semantic grammars to produce a semantic
representation for the input utterance. We use a stochastic language
model in recognition because of its robustness and efficiency. The
parsing stage must then be tolerant of mistakes due to disfluencies
and misrecognitions.

The parser outputs a frame with slots filled from the current utterance.
Information from the current frame is integrated with information
from previous frames to form the current context. A set of tests is
applied to determine whether to reset context. For example if new
depart and arrive locations are specified, old context is cleared. The
current context is then used to build an SQL query.

2.1. Recognition
The CMU Sphinx-II system [2] uses semi-continuous Hidden
Markov Models to model context-dependent phones (triphones), in-
eluding between-word context. The phone models are based on
senones, that is, observation distributions are shared between corre-
sponding states in similar models. The system uses four codebooks:
Mel-scale cepstra, 1st and 2nd difference cepstra, and power. An
observation probability is computed using a mixture of the top 4
distributions from each codebook.

213

The recognizer processes an utterance in four steps.

1. It makes a forward time-synchronous pass using full between-
word models, Viterbi scoring and a bigram language model.
This produces a word lattice where words have one begin time
but several end times.

2. It then makes a backward pass which uses the end times from
the words in the first pass and produces a second lattice which
contains multiple begin times for words.

3. An A* algorithm is used to generate the set of N-best hypothe-
ses for the utterance from these two lattices. An N of 100 was
used for these tests.

4. The set of N-best hypotheses is then reseored using a trigram
language model. The best scoring hypothesis after rescoring is
output as the result.

2.2. Parsing
Our NL understanding system (Phoenix) is designed forr0bust in-
formation extraction. It uses a simple frame mechanism to represent
task semantics. Frames are associated with the various types of ac-
tions that can be taken by the system. Slots in a frame represent the
various pieces of information relevant to the action that may be spec-
ified by the subject. For example, the most frequently used frame
in ATIS is the one corresponding to a request to display some type
of flight information. Slots in the frame specify what information
is to be displayed (flights, fares, times, airlines, etc), how it is to be
tabulated (a list, a count, ete) and the constraints that are to be used
(date ranges, time ranges, price ranges, ete).

The Phoenix system uses Recursive Transition Networks to encode
semantic grammars. The grammars specify word patterns (sequences
of words) which correspond to semantic tokens understood by the
system. A subset of tokens are considered as top-level tokens, which
means they can be recognized independently of surrounding context.
Nets call other nets to produee a semantic parse tree. The top-level
tokens appear as slots in the frame structures. The frames serve to
associate a set of semantic tokens with a function. Information is
often represented redundantly in different nets. Some nets repre-
sent more complex bindings between tokens, while others represent
simple stand-alone values. There is not one large sentential-level
grammar, but separate grammars for each slot (there are approxi-
mately 70 of these in our ATIS system). The parse is flexible at the
slot level in that it allows slots to be filled independent of order. It
is not necessary, to represent all different orders in which the slot
patterns could occur.

on frames. Many different frames, and several different versions of
a frame, are pursued simultaneously. The score for each frame hy-
pothesis is the number of words that it accounts for. A file of words
not to be counted in the score is included. At the end of an utter-
ante the parser picks the best scoring frame as the result. There is a
heuristic procedure for resolving ties. The output of the parser is the
frame name and the parse trees for its filled slots.

3 . L A N G U A G E M O D E L G E N E R A T I O N

Our system uses two different types of language models, a bigram
for speech recognition and and semantic grammar for parsing [4, 3].

3.1. Parsing Grammar

The frame structures and patterns for the Recursive Transition Net-
works were developed by processing transcripts of subjects perform-
ing scenarios of the ATIS task. The data, which consists of around
20000 utterances from the ATIS2 and ATIS3 corpora, were gathered
by several sites. A subset of this data (around 10000 utterances) has
been annotated with reference answers. The details of data collection
and annotation are described by DaM [1].

The goal of our system is to extract all relevant information from the
utterance. We do not attempt to parse each and every word in the
utterance. However, we have a problem with the grammar coverage
if we miss one of the content words in the utterance. Let us look
at some of the sentences from the December 1993 ARPA evaluation
where grammar coverage was a problem:

(x0s032sx) list *AIRPORT-DESIGNATIONS for flights
from st. petersburg
(8k8012sx) find a flight round trip from los angeles
to tacoma washington with a stopover in san francisco
*NOT -EXCEEDING the price of three hundred dollars
for june tenth nineteen ninety three

(g02084sx) list *THE -ORIGINS for alaska airlines
(g0d014sx) *ARE -SNACKS *SERVED on tower air

(i0k05esx) list *THE -DISTANCES to downtown

(i0k0eesx) list *THOSE -DISTANCES from los angeles
to downtown

In these sentences, the words preceded by ' - ' did not occur in the
grammar. However, we could parse the following sentences which
are similar to these sentences. The differences are highlighted in
bold letters.

Our semantic grammars arc written to allow flexibility in the pattern
match. The patterns for a semantic token consist of mandatory
words or tokens which arc necessary to the meaning of the token and
optional elements. The patterns arc also written to overgenerate in
ways that do not change the semantics. This overgeneration not only
makes the pattern matches more flexible but also serves to make the
networks smaller.

The parser operates by matching the word patterns for slots against
the input text. A set of possible interpretations are pursued simul-
taneously. The system is implemented as a top-down Recursive
Transition Network chart parser for slots. As slot fillers (semantic
phrases) are recognized, they are added to frames to which they ap-
ply. The algorithm is basically a dynamic programming beam search

list airport designation for flights from st. petersburg

find a flight round trip from los angeles to tacoma wash-
ington with a stopover in san francisco not more than
the price of three hundred dollars for june tenth nineteen
ninety three

list the origin for alaska airlines

are snack sewed on tower air

list the distance to downtown

list those distance from los angeles to downtown

Some of the words that occurred in the test set, but were not covered
by our grammar are as follows:

214

ALONG COMBINATION DESIGNATIONS
DISTANCES EVER EXCEEDING INFORMATIONS
ORIGINS RIGHT SEATAC SHOWED
SNACKS SOUTHERN TIP TOLD VERY
WANNA YEAH

Although we have used much of the training data in developing the
grammar, we have mainly focused on the annotated data. For the an-
notated data, we can compare our answers with the reference answers
and determine whether we have parsed the sentence reasonably. This
is consistent with the goal of our system, which is to extract all rel-
evant information from the utterance. For the unannotated data, we
need to manually look at either the output of the parser or the words
missed to decide if the parse is reasonable.

We had on overall error rate of 5.8% on the November 1992 ARPA
evaluation, and an error rate of around 4% on the ATIS2 annotated
data. However, our error rate on the ATIS3 annotated data was
around 18% for a nearly identical system. In the November 1992
ARPA evaluation, we had an error rate of 5.6% on the Class A set
and an error rate of 6.1% on the Class D set. However, 75% of the
Class A errors and 69% of the Class D errors in the evaluation set
were caused by the lack of grammar coverage. We do not have exact
results, but believe that the overwhelming number of errors in the
training set are still caused by lack of grammatical coverage.

We try to generalize the grammar to parse strings that are syntac-
tically similar to the utterances in the training data. In our current
system, this is achieved by manually adding synonyms and using
other completion techniques. We add other words that are related to
the words in the training corpus, for example, if we see Monday in
the training corpus, we add the word Mondays as well as other days
like Tuesday. If we had been more thorough in our completion, we
would have correctly parsed the sentences from the December 1993
evaluation that we mentioned above. The process can be vastly im-
proved by automating this completion process based on synonyms,
antonyms, plurals, possessives and other semantic classes. We could
also use morphemes to derive new words from the words used in
training data.

3.2. Recognition Language Model
The lexicon used by the recognizer is initially based on the training
data. We augment this lexicon using completion techniques de-
scribed above, as well as adding the words from the grammar used
by the parser. We also added many city names that are not in the
database. The recognition dictionary contained 2924 unique words
plus 10 nonspeech events. Currently, we allow nonspeech events
to occur between any words, like a silence. Since we have added
words to the lexicon which were not observed in the training data,
we need to generate a bigram with appropriate probabilities for these
words. Initially, we used a backed-off class bigram. The class bi-
gram used 1573 word classes and was smoothed with the standard
back-offmethod. In generating the class-based models, the probabil-
ity of a word given a class was determined by the unigram frequency
of the words rather than treating them as equi-probable. We then
compared this to a bigram language model created by interpolating
two different bigram models: 1) a backed-off word bigram and 2) a
backed-off class bigram. Our initial experiments on an unseen test
set indicated that the perplexity decreased from 21.7 to 20.58 when
we used an interpolated bigram instead of a class bigram. When
the recognizer was run on this test set (516 utterances) with the two

language models, word error rate was reduced from 11% to 10% by
using the interpolated bigram (compared to the class based). This is
and error reduction of about 9%.

We then tried to use the parser grammar to help smooth the bigram.
The hope was to improve the match between the language models
used during recognition and parsing and to get a better estimate of the
probabilities of unseen bigrams. A word-pair grammar was gener-
ated from the parser grammar, and probabilities added by assuming
equi-probable transitions from a word to all of its successors. This
should give a better probability to a bigram which had not been
seen, but was acceptable to the parser, than to an unseen bigram not
allowed by the parser. We then interpolated the class-based, word-
based and grammar-based bigrarns. However, when evaluated on a
test set, a recognizer using this model was not significantly different
than using the interpolated word and class bigrams.

The trigram language model used the same word classes as the
bigram, also smoothed by the back-off method, but not interpolated
with a word-level model. We felt that we did not have enough data
to train word trigrams.

4. PARSING
As described earlier, the system is implemented as a chart parser for
slot fillers. As tokens (semantic phrases) are recognized, they are
added to frames to which they apply. This process naturally produces
partial interpretations. Words which don't fit into a interpretation are
left out. In many cases the partial interpretation is sufficient for the
system to take the desired action. If not, it still provides a good basis
to begin a clarification dialog with the user. The system can give
meaningful feedback to the user about what was understood and
prompt for the most relevant missing information. The algorithm
also produces multiple interpretations. Many different frames, and
several different versions of a frame, are pursued simultaneously. In
earlier papers [4], we have described some of the heuristics used by
the parser to select the best interpretation for an utterance. If the
score is below a certain threshold (based on the number of words in
the utterance) it does not generate any parse.

The implementation of a chart mechanism had other advantages. The
system does not allow overlapping phrases in a frame, two different
slots could not use a given word in the input. The previous version of
the system used a subsumption process to favor matching the longest
strings possible, but did not keep substrings of the longest string. This
led to a phrase overlap problem if one slot could start with the same
word that could end another slot in the same frame. For example in
the utterance "Show flights from Boston", if "show flights" matched
one slot and "flights from Boston" matched another slot, both could
not be assigned to the same frame since they overlap on the word
"flights". The grammar writer could avoid the problem, but had to
be careful to do so. The chart algorithm efficiently produces and
keeps substrings. Now, it is not neccessary to bias for longer strings,
the overlap problem is solved by producing both parses at very little
extra cost. In the example, we would produce "show flights" "from
Boston" and "show" "flights from Boston", assuming the grammars
allowed these phrases.

5. Alternate Interpretations
Sometimes heuristics fail to identify the best interpretation, since
they do not use additional information available in the context. We
found it helpful to sometimes pursue alternate interpretations, that

215

is interpretations which were not the best according to the heuristics
used by the parser. In this section, we will describe when alternate
interpretations are needed.

One of the design decisions in our system was to use task knowledge
in the backend instead of in the parser. The parser only uses domain
independent heuristics. This sometimes leads to ambiguities. For
example, Show me the fares could refer to fares for flights or fares
for ground transportations. In general, heuristics correctly identify
the parse. However, consider the following two sentences:

I NEED FARES FROM MILWAUKEE TO LONG
BEACH AIRPORT (q0g0b7ss)
I NEED FARES FROM MILWAUKEE TO GENERAL
MITCHELL INTERNATIONAL AIRPORT

These sentences are syntactically identical. The user is most likely
asking for flight fares in the first sentence. In the second sentence,
the user is most likely asking for the cost of ground transportation.
However, the system needs domain knowledge to make these dis-
tinctions; it needs to know that Long Beach airport is in California,
while Generel Mitchell International is in Milwaukee. Since the
parser has no domain knowledge, it cannot parse both of these sen-
tences correctly. However, the backend has domain knowledge and
notices that one of the parses is incorrect.

We address this problem by generating a beam of interpretations.
The parser still produces the single best interpretation, but keeps
track of a number of other interpretations. Whenever the backend
notices a problem, it asks the parser for another interpretation. The
parser then selects the next best interpretation. However, the score
of the new interpretation must be within a certain threshold of the
best score.

We next look at the parses for the above mentioned sentences:

i need fares from milwaukee to general mitchell inter-
national ai rpor t
[transport.select_field] [list.spec] I NEED [ground-fare]
FARES [city_airport] FROM [city] [cityname] MIL-
WAUKEE TO [airport_name] GENERAL MITCHELL
INTERNATIONAL AIRPORT

i need fares from milwaukee to long beach airport
[transport_select_field] [list_spec] I NEED [ground.fare]
FARES [city_airport] FROM [city] [cityname] MIL-
WAUKEE TO [airport.for_city] [city] [cityname] LONG
BEACH AIRPORT
ERROR correction: Frame Changed
[flight_field.list] [list..spec] I NEED [flight_fields_exist]
[fare] FARES [flight=type] FROM [depart.loc] [city]
[cityname] MILWAUKEE TO [arrive_loc] [city] [city-
name] LONG BEACH

is processed by the recognizer (SPREC), transcripts of the utterances
are processed by the NL portion of the system, and then the speech
input is processed by the entire system. Processing transcripts shows
the NL coverage of the system and gives a baseline measure of how
well it would do if recognition were perfect. Processing starting
with the speech input then shows how much performance is lost due
to recognition errors. The evaluation measures the error rate for
each process. The measure used for the SPREC test is word error
rate. This is the sum of all insertion, substitution and deletion errors.
The NL and SLS sytems are scored on whether they produced a
correct answer from the database. For these tests an answer is either
correct (if it agrees with annotated database responses) or incorrect
(if it does no0. We had an error rate of 4.4% for SPREC, 9.3% for
NL and 13.2% for SLS. These were the best results reported for the
evaluation. So, for 9.3% of the transcript input, our system produced
a wrong answer (there is no indication of whether it was close). The
word error rate of 4.4% for the recognition gave a sentence error
rate of 22%. That is, 22% of the utterances contained at least one
recognition error. This number becomes 20% if class X utterances
are excluded. There were 773 non-X utterances in this test set,
so approximately 154 of the sentence hypotheses produced by the
recognizer contained errors. Approximately 30 of these led to an
error for the SLS system (when the transcript had been correctly
processed).

7. ACKNOWLEDGEMENTS
This research was sponsored by the Department of the Navy, Naval
Research Laboratory under Grant No. N00014-93-1-2005. The
views and conclusions contained in this document are those off the
authors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the U.S. Government. We thank
Raj Reddy and the rest of the speech group for their contributions to
this work.

References
1. Deborah A. Dahl, Madeline Bates, Michael Brown, William

Fisher, Kate Hunicke-Smith, David Pallctt, Christine Pao,
Alexander Rudnicky, and Elizabeth Shfibcrg. Expanding the
scope of the ATIS task: The ATIS-3 corpus. In Proceedings
of the DARPA Human Language Technology Workshop, March
1994.

2. Xuedong Huang, Fileno Alleva, Mei-Yuh Hwang, and Ronald
Rosenfeld. An overview of the SPHINX-II speech recogni-
tion system. In Proceedings of the DARPA Human Language
Technology Workshop, March 1993.

3. Sunil Issar and Wayne Ward. CMU's robust spoken language
understanding system. In Proceedings of Eurospeech, Septem-
ber 1993.

4. Wayne Ward. The CMU air travel information service: Un-
derstanding spontaneous speech. In Proceedings of the DARPA
Speech and Natural Language Workshop, pages 127-129, June
1990.

This error correction mechanism was used twice in the December
1993 evaluation set, and both times it worked correctly.

6. RESULTS AND CONCLUSION
In the December 1993 ARPA evaluation, systems from a number of
ARPA sites were evaluated. The evaluation has three parts, speech

216

