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ABSTRACT 
We have been developing a spoken language system to recognize 
and understand spontaneous speech. It is difficult for such systems 
to achieve good coverage of the lexicon and grammar that subjects 
might use because spontaneous speech often contains disfluencies 
and ungrammatical constructions. Our goal is to respond appropri- 
ately to input, even though coverage is not complete. The natural 
language component of our system is oriented toward the extraction 
of information relevant to a task, and seeks to directly optimize the 
correctness of the extracted information (and therefore the system 
response). We use a flexible frame-based parser, which parses as 
much of the input as possible. This approach leads both to high 
accuracy and robustness. We have implemented a version of this 
system for the Air Travel Information Service (ATIS) task, which is 
being used by several ARPA-funded sites to develop and evaluate 
speech understanding systems. Users are asked to perform a task 
that requires getting information from an Air Travel database. In 
this paper, we describe recent improvements in our system resulting 
from our efforts to improve the coverage given a limited amount of 
training data. These improvements address a number of problems 
including generating an adequate lexicon and grammar for the rec- 
ognizer, generating and generalizing an appropriate grammar for the 
parser, and dealing with ambiguous parses. 

1. INTRODUCTION 
Understanding spontaneous speech presents several problems that 
are not found either in recognizing read speech or in parsing written 
text. Since the users are not familiar with the lexicon and grammar 
used by the system, it is very difficult for a speech understanding sys- 
tem to achieve good coverage of the lexicon and grammar that sub- 
jects might use. Spontaneous speech often contains ungrammatical 
constructions, stutters, filled pauses, restarts, repeats, interjections, 
etc. This causes problems both for the recognizer and the parser. 

Stochastic language models tend to produce more robust recognition 
than grammar based models. They can be smoothed to allow for 
unseen word sequences and their scope is short enough to "get back 
on track" after an error. The parsing and understanding component 
also must be robust to the phenomena in spontaneous speech and to 
recognition errors. Even though the speech is disfluent and gramat- 
ically ill-formed, the relevant information is still consistent most of 
the time. We therefore try to model the information in an utterance 
rather than its grammatical structure. The natural language compo- 
nent of our system is oriented toward the extraction of information 
relevant to a task, and seeks to directly optimize the correctness of the 
extracted information (and therefore the system response). We use 
a flexible frame-based parser, which parses as much of the input as 
possible. This approach leads both to high accuracy and robustness. 

We have implemented a version of this system for the ARPA Air 
Travel Information Service (ATIS) task. Users are asked to perform 
a task that requires getting information from an Air Travel database. 
They must interact with the system by voice to find a solution. In 
this paper, we describe recent improvements in our system resulting 
from our efforts to increase the coverage given a limited amount of 
training data. These improvements address a number of problems 
mentioned above: 

• Generating and generalizing an appropriate grammar for the 
parser 

* Generating a lexicon and language model for the recognizer 

• Resolving ambiguous parses with context 

In addition, we improved the basic performance of the parser and 
added a rejection mechanism. 

2. SYSTEM OVERVIEW 
The CMU spoken language understanding system is called Phoenix, 
and has been described in previous papers [4, 3]. It is neccessary 
here to give a brief description of the system in order to understand 
the context within which we were making changes. 

Our system has a loose coupfing between the recognition and parsing 
stages. The recognizer uses stochastic language models to produce 
a single word string hypothesis. This hypothesis is then passed to a 
parsing module which uses semantic grammars to produce a semantic 
representation for the input utterance. We use a stochastic language 
model in recognition because of its robustness and efficiency. The 
parsing stage must then be tolerant of mistakes due to disfluencies 
and misrecognitions. 

The parser outputs a frame with slots filled from the current utterance. 
Information from the current frame is integrated with information 
from previous frames to form the current context. A set of tests is 
applied to determine whether to reset context. For example if new 
depart and arrive locations are specified, old context is cleared. The 
current context is then used to build an SQL query. 

2.1. Recognition 
The CMU Sphinx-II system [2] uses semi-continuous Hidden 
Markov Models to model context-dependent phones (triphones), in- 
eluding between-word context. The phone models are based on 
senones, that is, observation distributions are shared between corre- 
sponding states in similar models. The system uses four codebooks: 
Mel-scale cepstra, 1st and 2nd difference cepstra, and power. An 
observation probability is computed using a mixture of the top 4 
distributions from each codebook. 
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The recognizer processes an utterance in four steps. 

1. It makes a forward time-synchronous pass using full between- 
word models, Viterbi scoring and a bigram language model. 
This produces a word lattice where words have one begin time 
but several end times. 

2. It then makes a backward pass which uses the end times from 
the words in the first pass and produces a second lattice which 
contains multiple begin times for words. 

3. An A* algorithm is used to generate the set of N-best hypothe- 
ses for the utterance from these two lattices. An N of 100 was 
used for these tests. 

4. The set of N-best hypotheses is then reseored using a trigram 
language model. The best scoring hypothesis after rescoring is 
output as the result. 

2.2. Parsing 
Our NL understanding system (Phoenix) is designed forr0bust in- 
formation extraction. It uses a simple frame mechanism to represent 
task semantics. Frames are associated with the various types of ac- 
tions that can be taken by the system. Slots in a frame represent the 
various pieces of information relevant to the action that may be spec- 
ified by the subject. For example, the most frequently used frame 
in ATIS is the one corresponding to a request to display some type 
of flight information. Slots in the frame specify what information 
is to be displayed (flights, fares, times, airlines, etc), how it is to be 
tabulated (a list, a count, ete) and the constraints that are to be used 
(date ranges, time ranges, price ranges, ete). 

The Phoenix system uses Recursive Transition Networks to encode 
semantic grammars. The grammars specify word patterns (sequences 
of words) which correspond to semantic tokens understood by the 
system. A subset of tokens are considered as top-level tokens, which 
means they can be recognized independently of surrounding context. 
Nets call other nets to produee a semantic parse tree. The top-level 
tokens appear as slots in the frame structures. The frames serve to 
associate a set of semantic tokens with a function. Information is 
often represented redundantly in different nets. Some nets repre- 
sent more complex bindings between tokens, while others represent 
simple stand-alone values. There is not one large sentential-level 
grammar, but separate grammars for each slot (there are approxi- 
mately 70 of these in our ATIS system). The parse is flexible at the 
slot level in that it allows slots to be filled independent of order. It 
is not necessary, to represent all different orders in which the slot 
patterns could occur. 

on frames. Many different frames, and several different versions of 
a frame, are pursued simultaneously. The score for each frame hy- 
pothesis is the number of words that it accounts for. A file of words 
not to be counted in the score is included. At the end of an utter- 
ante the parser picks the best scoring frame as the result. There is a 
heuristic procedure for resolving ties. The output of the parser is the 
frame name and the parse trees for its filled slots. 

3 .  L A N G U A G E  M O D E L  G E N E R A T I O N  

Our system uses two different types of language models, a bigram 
for speech recognition and and semantic grammar for parsing [4, 3]. 

3.1. Parsing Grammar 

The frame structures and patterns for the Recursive Transition Net- 
works were developed by processing transcripts of subjects perform- 
ing scenarios of the ATIS task. The data, which consists of around 
20000 utterances from the ATIS2 and ATIS3 corpora, were gathered 
by several sites. A subset of this data (around 10000 utterances) has 
been annotated with reference answers. The details of data collection 
and annotation are described by DaM [1]. 

The goal of our system is to extract all relevant information from the 
utterance. We do not attempt to parse each and every word in the 
utterance. However, we have a problem with the grammar coverage 
if we miss one of the content words in the utterance. Let us look 
at some of the sentences from the December 1993 ARPA evaluation 
where grammar coverage was a problem: 

(x0s032sx) list *AIRPORT-DESIGNATIONS for flights 
from st. petersburg 
(8k8012sx) find a flight round trip from los angeles 
to tacoma washington with a stopover in san francisco 
*NOT -EXCEEDING the price of three hundred dollars 
for june tenth nineteen ninety three 

(g02084sx) list *THE -ORIGINS for alaska airlines 
(g0d014sx) *ARE -SNACKS *SERVED on tower air 

(i0k05esx) list *THE -DISTANCES to downtown 

(i0k0eesx) list *THOSE -DISTANCES from los angeles 
to downtown 

In these sentences, the words preceded by ' - '  did not occur in the 
grammar. However, we could parse the following sentences which 
are similar to these sentences. The differences are highlighted in 
bold letters. 

Our semantic grammars arc written to allow flexibility in the pattern 
match. The patterns for a semantic token consist of mandatory 
words or tokens which arc necessary to the meaning of the token and 
optional elements. The patterns arc also written to overgenerate in 
ways that do not change the semantics. This overgeneration not only 
makes the pattern matches more flexible but also serves to make the 
networks smaller. 

The parser operates by matching the word patterns for slots against 
the input text. A set of possible interpretations are pursued simul- 
taneously. The system is implemented as a top-down Recursive 
Transition Network chart parser for slots. As slot fillers (semantic 
phrases) are recognized, they are added to frames to which they ap- 
ply. The algorithm is basically a dynamic programming beam search 

list airport designation for flights from st. petersburg 

find a flight round trip from los angeles to tacoma wash- 
ington with a stopover in san francisco not more than 
the price of three hundred dollars for june tenth nineteen 
ninety three 

list the origin for alaska airlines 

are snack sewed on tower air 

list the distance to downtown 

list those distance from los angeles to downtown 

Some of the words that occurred in the test set, but were not covered 
by our grammar are as follows: 
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ALONG COMBINATION DESIGNATIONS 
DISTANCES EVER EXCEEDING INFORMATIONS 
ORIGINS RIGHT SEATAC SHOWED 
SNACKS SOUTHERN TIP TOLD VERY 
WANNA YEAH 

Although we have used much of the training data in developing the 
grammar, we have mainly focused on the annotated data. For the an- 
notated data, we can compare our answers with the reference answers 
and determine whether we have parsed the sentence reasonably. This 
is consistent with the goal of our system, which is to extract all rel- 
evant information from the utterance. For the unannotated data, we 
need to manually look at either the output of the parser or the words 
missed to decide if the parse is reasonable. 

We had on overall error rate of 5.8% on the November 1992 ARPA 
evaluation, and an error rate of around 4% on the ATIS2 annotated 
data. However, our error rate on the ATIS3 annotated data was 
around 18% for a nearly identical system. In the November 1992 
ARPA evaluation, we had an error rate of 5.6% on the Class A set 
and an error rate of 6.1% on the Class D set. However, 75% of the 
Class A errors and 69% of the Class D errors in the evaluation set 
were caused by the lack of grammar coverage. We do not have exact 
results, but believe that the overwhelming number of errors in the 
training set are still caused by lack of grammatical coverage. 

We try to generalize the grammar to parse strings that are syntac- 
tically similar to the utterances in the training data. In our current 
system, this is achieved by manually adding synonyms and using 
other completion techniques. We add other words that are related to 
the words in the training corpus, for example, if we see Monday in 
the training corpus, we add the word Mondays as well as other days 
like Tuesday. If we had been more thorough in our completion, we 
would have correctly parsed the sentences from the December 1993 
evaluation that we mentioned above. The process can be vastly im- 
proved by automating this completion process based on synonyms, 
antonyms, plurals, possessives and other semantic classes. We could 
also use morphemes to derive new words from the words used in 
training data. 

3.2. Recognition Language Model 
The lexicon used by the recognizer is initially based on the training 
data. We augment this lexicon using completion techniques de- 
scribed above, as well as adding the words from the grammar used 
by the parser. We also added many city names that are not in the 
database. The recognition dictionary contained 2924 unique words 
plus 10 nonspeech events. Currently, we allow nonspeech events 
to occur between any words, like a silence. Since we have added 
words to the lexicon which were not observed in the training data, 
we need to generate a bigram with appropriate probabilities for these 
words. Initially, we used a backed-off class bigram. The class bi- 
gram used 1573 word classes and was smoothed with the standard 
back-offmethod. In generating the class-based models, the probabil- 
ity of a word given a class was determined by the unigram frequency 
of the words rather than treating them as equi-probable. We then 
compared this to a bigram language model created by interpolating 
two different bigram models: 1) a backed-off word bigram and 2) a 
backed-off class bigram. Our initial experiments on an unseen test 
set indicated that the perplexity decreased from 21.7 to 20.58 when 
we used an interpolated bigram instead of a class bigram. When 
the recognizer was run on this test set (516 utterances) with the two 

language models, word error rate was reduced from 11% to 10% by 
using the interpolated bigram (compared to the class based). This is 
and error reduction of about 9%. 

We then tried to use the parser grammar to help smooth the bigram. 
The hope was to improve the match between the language models 
used during recognition and parsing and to get a better estimate of the 
probabilities of unseen bigrams. A word-pair grammar was gener- 
ated from the parser grammar, and probabilities added by assuming 
equi-probable transitions from a word to all of its successors. This 
should give a better probability to a bigram which had not been 
seen, but was acceptable to the parser, than to an unseen bigram not 
allowed by the parser. We then interpolated the class-based, word- 
based and grammar-based bigrarns. However, when evaluated on a 
test set, a recognizer using this model was not significantly different 
than using the interpolated word and class bigrams. 

The trigram language model used the same word classes as the 
bigram, also smoothed by the back-off method, but not interpolated 
with a word-level model. We felt that we did not have enough data 
to train word trigrams. 

4. PARSING 
As described earlier, the system is implemented as a chart parser for 
slot fillers. As tokens (semantic phrases) are recognized, they are 
added to frames to which they apply. This process naturally produces 
partial interpretations. Words which don't fit into a interpretation are 
left out. In many cases the partial interpretation is sufficient for the 
system to take the desired action. If not, it still provides a good basis 
to begin a clarification dialog with the user. The system can give 
meaningful feedback to the user about what was understood and 
prompt for the most relevant missing information. The algorithm 
also produces multiple interpretations. Many different frames, and 
several different versions of a frame, are pursued simultaneously. In 
earlier papers [4], we have described some of the heuristics used by 
the parser to select the best interpretation for an utterance. If the 
score is below a certain threshold (based on the number of words in 
the utterance) it does not generate any parse. 

The implementation of a chart mechanism had other advantages. The 
system does not allow overlapping phrases in a frame, two different 
slots could not use a given word in the input. The previous version of 
the system used a subsumption process to favor matching the longest 
strings possible, but did not keep substrings of the longest string. This 
led to a phrase overlap problem if one slot could start with the same 
word that could end another slot in the same frame. For example in 
the utterance "Show flights from Boston", if "show flights" matched 
one slot and "flights from Boston" matched another slot, both could 
not be assigned to the same frame since they overlap on the word 
"flights". The grammar writer could avoid the problem, but had to 
be careful to do so. The chart algorithm efficiently produces and 
keeps substrings. Now, it is not neccessary to bias for longer strings, 
the overlap problem is solved by producing both parses at very little 
extra cost. In the example, we would produce "show flights" "from 
Boston" and "show" "flights from Boston", assuming the grammars 
allowed these phrases. 

5. Alternate Interpretations 
Sometimes heuristics fail to identify the best interpretation, since 
they do not use additional information available in the context. We 
found it helpful to sometimes pursue alternate interpretations, that 
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is interpretations which were not the best according to the heuristics 
used by the parser. In this section, we will describe when alternate 
interpretations are needed. 

One of the design decisions in our system was to use task knowledge 
in the backend instead of in the parser. The parser only uses domain 
independent heuristics. This sometimes leads to ambiguities. For 
example, Show me the fares could refer to fares for flights or fares 
for ground transportations. In general, heuristics correctly identify 
the parse. However, consider the following two sentences: 

I NEED FARES FROM MILWAUKEE TO LONG 
BEACH AIRPORT (q0g0b7ss) 
I NEED FARES FROM MILWAUKEE TO GENERAL 
MITCHELL INTERNATIONAL AIRPORT 

These sentences are syntactically identical. The user is most likely 
asking for flight fares in the first sentence. In the second sentence, 
the user is most likely asking for the cost of ground transportation. 
However, the system needs domain knowledge to make these dis- 
tinctions; it needs to know that Long Beach airport is in California, 
while Generel Mitchell International is in Milwaukee. Since the 
parser has no domain knowledge, it cannot parse both of these sen- 
tences correctly. However, the backend has domain knowledge and 
notices that one of the parses is incorrect. 

We address this problem by generating a beam of interpretations. 
The parser still produces the single best interpretation, but keeps 
track of a number of other interpretations. Whenever the backend 
notices a problem, it asks the parser for another interpretation. The 
parser then selects the next best interpretation. However, the score 
of the new interpretation must be within a certain threshold of the 
best score. 

We next look at the parses for the above mentioned sentences: 

i need fares from milwaukee to general mitchell inter- 
national ai rpor t  
[transport.select_field] [list.spec] I NEED [ground-fare] 
FARES [city_airport] FROM [city] [cityname] MIL- 
WAUKEE TO [airport_name] GENERAL MITCHELL 
INTERNATIONAL AIRPORT 

i need fares from milwaukee to long beach airport 
[transport_select_field] [list_spec] I NEED [ground.fare] 
FARES [city_airport] FROM [city] [cityname] MIL- 
WAUKEE TO [airport.for_city] [city] [cityname] LONG 
BEACH AIRPORT 
ERROR correction: Frame Changed 
[flight_field.list] [list..spec] I NEED [flight_fields_exist] 
[fare] FARES [flight=type] FROM [depart.loc] [city] 
[cityname] MILWAUKEE TO [arrive_loc] [city] [city- 
name] LONG BEACH 

is processed by the recognizer (SPREC), transcripts of the utterances 
are processed by the NL portion of the system, and then the speech 
input is processed by the entire system. Processing transcripts shows 
the NL coverage of the system and gives a baseline measure of how 
well it would do if recognition were perfect. Processing starting 
with the speech input then shows how much performance is lost due 
to recognition errors. The evaluation measures the error rate for 
each process. The measure used for the SPREC test is word error 
rate. This is the sum of all insertion, substitution and deletion errors. 
The NL and SLS sytems are scored on whether they produced a 
correct answer from the database. For these tests an answer is either 
correct (if it agrees with annotated database responses) or incorrect 
(if it does no0. We had an error rate of 4.4% for SPREC, 9.3% for 
NL and 13.2% for SLS. These were the best results reported for the 
evaluation. So, for 9.3% of the transcript input, our system produced 
a wrong answer (there is no indication of whether it was close). The 
word error rate of 4.4% for the recognition gave a sentence error 
rate of 22%. That is, 22% of the utterances contained at least one 
recognition error. This number becomes 20% if class X utterances 
are excluded. There were 773 non-X utterances in this test set, 
so approximately 154 of the sentence hypotheses produced by the 
recognizer contained errors. Approximately 30 of these led to an 
error for the SLS system (when the transcript had been correctly 
processed). 
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This error correction mechanism was used twice in the December 
1993 evaluation set, and both times it worked correctly. 

6. RESULTS AND CONCLUSION 
In the December 1993 ARPA evaluation, systems from a number of 
ARPA sites were evaluated. The evaluation has three parts, speech 
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