
Efficient Bottom-Up Parsing
Robert Moore and John Dowding

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Abstract
This paper describes a series of experiments aimed at
producing a bot tom-up parser that will produce partial
parses suitable for use in robust interpretation and still
be reasonably efficient. In the course of these experi-
ments, we improved parse times by a factor of 18 over
our first a t tempt, ending with a system that was twice
as fast as our previous parser, which relied on strong
top-down constraints. The major algorithmic variations
we tried are described along with the corresponding per-
formance results.

Introduction
Elsewhere [1] we describe a change in our approach to
NL processing to allow for more robust methods of in-
terpretation. One consequence of this change is that it
requires a different type of parsing algorithm from the
one we have been using. In our previous SLS work, we
have used a shift-reduce left-corner parser incorporating
strong top-down constraints derived from the left con-
text, to limit the structures built by the parser [2]. With
this parser, no structure is built unless it can combine
with structures already built to contribute to an analysis
of the input as a single complete utterance. If we want
to find grammatical fragments of the input that may be
of use in robust interpretation, however, such strong use
of top-down constraints is not appropriate.

To address this issue, we have built and measured the
performance of a number of bot tom-up parsers. These
parsers use the same unification grammar as our shift-
reduce parser, but they do not impose the strong top-
down constraints of the original. These experimental
parsers fall into two groups: purely bot tom-up parsers
and bot tom-up parsers that use limited top-down con-
straints. The experiments were performed using a fixed
grammar and lexicon for the Air Trave! Information Sys-
tem (ATIS) domain, and an arbitrarily selected test cor-
pus of 120 ATIS0 training sentences. The test grammar
could produce complete parses for 79 of these 120 sen-
tences.

Pure B o t t o m - U p Parsing
The first parser we implemented was a straightforward
"naive" implementation of the CKY algorithm [3, 4]
adapted to unification grammar. In this algorithm, a
"chart" is maintained that contains records, or "edges,"
for each type of linguistic category that has been found
between given start and end positions in a sentence. In
context-free parsing, these categories are simply the non-
terminal symbols of the grammar. In a unification gram-
mar, they are complex structures that assign values to
particular features of a more general category type.

Our naive algorithm simply seeds the chart with edges
for each possible category for all the words in the sen-
tence, and then works left to right constructing addi-
tional edges bottom-up. Each time an edge is added to
the chart, the grammar is searched for rules whose last
category on the right-hand side matches the edge just
added to the chart, and the chart is scanned back to the
left for a contiguous sequence of edges that match the
remaining categories on the right-hand side of the rule.
If these are found, then an edge for the category on the
left-hand side of the rule is added to the chart, span-
ning the segment of the input covered by the sequence
of edges that matched the right-hand side of the rule.

When measured with our test grammar and test cor-
pus, our implementation of this algorithm is almost nine
times slower than our original shift-reduce parser. We
conjectured that one significant problem was the uncon-
strained hypothesization of empty categories or "gaps."
Our grammar, like many others, allows certain linguis-
tic phrase types to be realized as the empty string in
order to simplify the overall structure of the grammar.
For example, "What cities does American fly to from
Boston?" is analyzed as having an empty noun phrase
between "to" and "from," so that most of the analysis
can be carried out using the same rules that are used to
analyze such sentences as "Does American fly to Dallas
from Boston?" Because empty categories are not di-
rectly indicated in the word string, our naive bottom-up
parser must hypothesize every possible empty category
at every point in the input.

To address this point, we applied a well-known trans-
formation to the grammar to eliminate empty categories
by adding additional rules. For each type of empty cat-

200

egory, we found every case where it would unify with a
category on the right-hand side of a rule, performed the
unification, and deleted the unified empty category from
the rule. For example, if B can be an empty category
then from A ~ B C we would derive the rule A ~ C,
taking into account the results of unification. When all
such derived rules are added to the grammar, all the
empty categories can be eliminated.

Performing this transformation both reduced the num-
ber of edges being generated and speeded up parsing,
but only by about 20 percent in each case. We observed
that the elimination of empty categories had resulted in a
grammar with many more unit production rules than the
original grammar; that is, rules of the form A ~ B. This
occurred because of the large number of cases like the
one sketched above, where an empty category matches
one of the categories on the right-hand side of a binary
branching rule. We determined that the application of
these unit production rules accounted for more than 60
percent of the edges constructed by the parser.

Our next thought, therefore, was to try to transform
the grammar to eliminate unit productions as well, but
this process turned out to be, in practical terms, in-
tractable. Eliminating empty categories had increased
the grammar size but only by about half. When we
tried to eliminate unit productions, processing the first
four (out of several hundred) grammar rules took a cou-
ple of hours of computation time and generated more
than 1800 derived rules. We abandoned this approach,
and instead we eliminated the unit productions from the
grammar by compiling them into a "link table." The
link table is basically the transitive closure of the unit
productions, so it is, in effect, a specification of the unit
derivations permit ted by the grammar, omitting the in-
termediate nodes. This table is then used by the parser
to find a path via unit productions between the edges in
the chart and the categories that appear in the nonunit
grammar rules. This is effectively the same as the CKY
algorithm except that edges that would be produced by
unit derivations are never explicitly created.

We also made some modifications to speed up selec-
tion of applicable grammar rules. We added a "skeletal"
chart that keeps track of the sequences of general cat-
egories (ignoring features) that occur in the chart (or
could be generated using the link table), with the re-
striction that the only sequences recorded are those that
are initial segments of the sequence of general categories
(ignoring features) on the right-hand side of some gram-
mar rule. Each grammar rule is itself indexed by the
sequence of general categories occuring on its right-hand
side. For example, if there is some sort of verb spanning
position x through position y in the input and some some
sort of noun phrase spanning position y through position
z, the skeletal chart would record that there is a sequence
of type v.xtp ending at point z . Thus, when the parser
searches for applicable rules to apply to generate new
edges in the chart at a particular position, it only con-
siders rules which are indexed by an entry in the skeletal
chart for that position.

Eliminating unit productions by use of the link ta-
ble and accessing the grammar rules through the skele-
tal chart made the parser substantially faster, but this
parser is still almost three times slower than the shift re-
duce parser on our test corpus using our test grammar.
At this point, we seemed to have reached a practical
limit to how fast we could make the parser while still
constructing essentially every possible edge bottom-up.
This parser is in fact almost twice as fast as the shift-
reduce parser in terms of time per edge constructed, but
it constructs more than four times as many edges.

Making Limited Use of Context
Our limited success in constructing a purely bottom-
up parser that would be efficient enough for practical
use with our unification grammar led us to reconsider
whether it is really necessary to compute every phrase
that can be identified bot tom-up in order to use the out-
put of the parser in a robust interpretation scheme. We
again focused our attention on syntactic gaps. Although
we had dealt effectively with explicitly empty categories
and with categories generated by the unit productions
created by the elimination of empty categories, we knew
that many of the additional edges the bottom-up parser
was creating were for larger phrases that implicitly con-
tain gaps (e.g., a transitive verb phrase with a missing
object noun phrase), even when there is nothing in the
preceding context to license such a phrase. We reasoned
that there is little benefit to identifying such phrases,
the vast majori ty of which would be spurious anyway,
because unless we can determine the semantic filler of a
gap, the phrase containing it is unlikely to be of any use
in robust interpretation.

With this rationale, we have implemented several vari-
ants of a bot tom-up parsing algorithm that allows us to
use limited top-down constraints derived from the left-
context to block the formation of just the phrases that
implicitly contain gaps not licensed by the preceding con-
text. For example, in the sentence we previously dis-
cussed, "What cities does American fly to from Boston?"
the interrogative noun phrase "what cities" signals the
possible presence of a noun phrase gap later in the sen-
tence. This licenses

fly to
fly to from Boston
American fly to from Boston
does American fly to from Boston

all as being legitimate phrases that contain a noun
phrase gap. Without that preceding context, we would
not want to consider any of these word strings as legiti-
mate phrases.

To implement this approach we partitioned the set
of grammatical categories into context-independent and
context-dependent subsets, with the context-dependent
categories being those that implicitly contain gaps.
Defining which categories those are is relatively easy in
our grammar, because we have a uniform treatment of

201

"wh" gaps, usually called "gap-threading" [5], so that
every category that implicitly or explicitly contains a
gap has a feature g a p s i n whose value is something other
than n u l l . We have a similar t rea tment of the fronting of
auxiliary verbs in yes/no questions, controlled by the fea-
ture v s t o r e . Finally, an additional quirk of our g rammar
required us to t reat all relative clauses as context depen-
dent categories. So we defined the context-independent
categories to be those that

• Have n u l l as the value of g a p s i n or lack the feature
g a p s i n , and

• Have n u l l as the value of v s t o r e or lack the feature
vstore, and

• Are not relative clauses.

All other categories are context dependent.
These is, of course, s imply one of any number of

ways tha t categories could be divided between context-
independent and context-dependent. Our ability to
change these declarations gives us an interesting pa-
rameterizat ion of our parser, such that it can be run
as anything from a purely bo t tom-up parser, if all cat-
egories are declared context-independent, to one that
uses m a x i m u m prediction based on left context like our
shift-reduce parser, if all categories are declared context-
dependent. I t would also be possible to derive a candi-
date set of context-dependent categories automatical ly
or semi-automatical ly from a corpus. The candidates for
context-dependent categories would be those categories
that most often fail to contribute to a complete parse
when found bot tom-up. 1

The basic parsing algori thm remains the same as in
the purely bo t tom-up parsers, with a few modifications.
After each rule application the resulting category is
checked to see whether it unifies with one of the context-
independent categories. I f so, the edge for it is added to
the chart with no further checking. I f not, a test is made
to see whether the category is predicted by the preceding
left context. I f so, it is added to the chart; otherwise, it
is rejected.

The main complexities of the algori thm are in the gen-
eration and testing of predictions. Whenever an edge is
added to the chart, predictions are generated tha t are
similar to "dotted rules" or "incomplete edges," except
that predictions include only the remaining categories to
be matched, since predictions are not used in a reduc-
tion step as they are in other algorithms. So, if we have
a rule of the form A ~ B C and we add an edge for B to
the chart, then we may add a prediction for C following
B. Whether the prediction is made or not depends on a
number of things, including whether the left-hand side of
the rule is context-dependent or independent. In the cur-
rent example, if A is a context-independent category, we
proceed with the prediction; otherwise, we must check
whether A itself is predicted. In addition, predictions

X Tb_is idea arose in response to a quest ion posed by Mitch
Marcus.

can arise from matching par t of a previous prediction.
If we have predicted A B and we find A, then we can
predict B.

In order to minimize the number of predictions made,
we make two impor tan t checks. First we check that the
prediction actually predicts some context-dependent cat-
egory. Second, we do a "follow" check, to make sure that
the predicted category might occur, given the next word
in the input stream. There are a few other minor re-
finements to limit the number of predictions, but these
are the most impor tant ones. In order to check whether
a context-dependent category is predicted by a certain
prediction, we consult a "left-corner teachabili ty table"
that tells us whether the category we are testing is a
possible left corner of the predicted category.

When we tested this algorithm, we found that it dra-
matical ly reduced the number of edges generated, and
equally dramatical ly improved parse time. We noted
above tha t our best purely bo t tom-up parser was about
three times slower tha t the shift-reduce parser. This
algori thm proved to be 20 percent faster than the shift-
reduce parser on our test corpus and test grammar .

Examinat ion of the number and type of edges pro-
duced by this weakly-predictive parser led us to ques-
tion whether all the refinements that we had made to
the purely bo t tom-up parsers, in order to deal with the
enormous number of edges they produced, were still nec-
essary. We have performed a number of experiments
removing some of those refinements, with interesting re-
sults. The main effect we observed was tha t using the
link table to avoid creating edges for categories produced
by unit derivations is no longer productive. By using the
link table to create explicit edges for those categories, so
that we do not have to use the link table at the t ime
we match the right-hand sides of rules against the chart,
we got a parser tha t was twice as fast as the shift re-
duce parser. We also found tha t leaving empty cate-
gories in the g r ammar actually speeded-up this version
of the parser very slightly (about 4 percent). More edges
and predictions were generated for the empty categories,
but this was apparent ly more than compensated for by
the reduction in the number of g r a m m a r rules.

C o n c l u s i o n s
This paper is, in effect, a narrat ive of an exercise in al-
gori thm design and software engineering. Unlike most
algorithms papers, it contains a great deal of detail on
what did not work, or at least what did not work as
well as had been hoped. It is also notable because it
talks about practical, rather than theoretical efficiency.
Most papers on parsing algori thms focus on theoretical
worst-case t ime bounds. Although we have not analyzed
it, it seems likely tha t all the algorithms we tried have
the same polynomial t ime bound, but the difference in
the constants of proport ional i ty involved makes all the
difference between the algori thms being usable and not
usable. Also, unlike most experimental results on pars-
ing, ours are based on a real g rammar , being developed

202

for a real application, not a toy grammar written only for
the purposes of testing parsing algorithms. It is unlikely
that the problems with gaps that are absolutely crucial
in this exercise would arise in such a toy grammar.

In terms of concrete results, the relative performance
of several of the parsers is summarized in the table below.

Parser Time # Edg~
shift-reduce 1.00 1.00
naive bottom-up 8.81 12.52
best bottom-up 2.95 4.62
best predictive 0.48 1.79

e s Time/Edge
1.00
0.70
0.63
0.27

Notice that all the new parsers are significantly faster
than the shift-reduce parser in terms time per edge gen-
erated. This is undoubtedly due to the high overhead of
the prediction mechanism used in the shift-reduce parser.
It is also interesting to note that among the new parsers,
the faster the overall speed of the parser, the faster the
time per edge, also. This may be somewhat surprising,
because of all the additional mechanisms added to the
last two parsers to reduce the number of edges, compared
to the naive bottom-up parser. Evidently the benefits of
having a smaller chart to search outweighed the costs of
the additional mechanism, even on the basis of time per
edge.

In summary, our first attempt to produce a bottom-up
parser was nine times slower than our baseline system;
our last attempt was twice as fast. Thus we achieved
a speed up of a factor of 18 over the course of these
experiments. We finished not only with a parser that
produced the additional possible phrases that we wanted
for robust interpretation, but did so much faster than the
parser we started with. Furthermore, we have developed
what seems to be an important new parsing method for
grammars that allow gaps, and perhaps more generally
for grammars with a set of categories that can be divided
into those constrainted mainly internally and those with
important external constraints.

Report AFCRL-65-758, Air Force Cambridge Re-
search Laboratory, Bedford, Massachusetts (1965).

[4] D. H. Younger, "Recognition and Parsing of
Context-Free Languages in Time nS, " Information
and Confrol Vol. 10, No. 2, pp. 189-208 (1967).

[5] L. Karttunnen, "D-PATR: A Development Envi-
ronment for Unification-Based Grammars," Pro-
ceedings of the l l t h International Conference on
Computational Linguistics, Bonn, West Germany,
pp. 74-80 (1986).

Acknowledgments
This research was supported by the Defense Advanced
Research Projects Agency under Contract N00014-90-C-
0085 with the Office of Naval Research.

References
[1] E. Jackson, D. Appelt, J. Bear, R. Moore, and

A. Podlozny, A Template Mafcher for Robust NL
Interprefa~ioa, Proceedings, Fourth DARPA Work-
shop on Speech and Natural Language (February
1991).

[2] R. Moore, D. Appelt, J. Bear, M. DMrymple, and
D. Moran, SRI's Experience with the ATIS Eval-
uation, Proceedings, DARPA Speech and Natural
Language Workshop (June 1990).

[3] T. Kasami, "An Efficient Recognition and Syntax
Algorithm for Context-Free Languages," Scientific

203

