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Abstract  
This paper describes a series of experiments aimed at 
producing a bot tom-up parser that  will produce partial 
parses suitable for use in robust interpretation and still 
be reasonably efficient. In the course of these experi- 
ments, we improved parse times by a factor of 18 over 
our first a t tempt,  ending with a system that  was twice 
as fast as our previous parser, which relied on strong 
top-down constraints. The  major algorithmic variations 
we tried are described along with the corresponding per- 
formance results. 

Introduction 
Elsewhere [1] we describe a change in our approach to 
NL processing to allow for more robust methods of in- 
terpretation. One consequence of this change is that  it 
requires a different type of parsing algorithm from the 
one we have been using. In our previous SLS work, we 
have used a shift-reduce left-corner parser incorporating 
strong top-down constraints derived from the left con- 
text, to limit the structures built by the parser [2]. With 
this parser, no structure is built unless it can combine 
with structures already built to contribute to an analysis 
of the input as a single complete utterance. If we want 
to find grammatical fragments of the input that  may be 
of use in robust interpretation, however, such strong use 
of top-down constraints is not appropriate. 

To address this issue, we have built and measured the 
performance of a number of bot tom-up parsers. These 
parsers use the same unification grammar as our shift- 
reduce parser, but they do not impose the strong top- 
down constraints of the original. These experimental 
parsers fall into two groups: purely bot tom-up parsers 
and bot tom-up parsers that  use limited top-down con- 
straints. The  experiments were performed using a fixed 
grammar and lexicon for the Air Trave! Information Sys- 
tem (ATIS) domain, and an arbitrarily selected test cor- 
pus of 120 ATIS0 training sentences. The test grammar 
could produce complete parses for 79 of these 120 sen- 
tences. 

Pure B o t t o m - U p  Parsing 
The first parser we implemented was a straightforward 
"naive" implementation of the CKY algorithm [3, 4] 
adapted to unification grammar.  In this algorithm, a 
"chart" is maintained that  contains records, or "edges," 
for each type of linguistic category that  has been found 
between given start  and end positions in a sentence. In 
context-free parsing, these categories are simply the non- 
terminal symbols of the grammar.  In a unification gram- 
mar, they are complex structures that  assign values to 
particular features of a more general category type. 

Our naive algorithm simply seeds the chart with edges 
for each possible category for all the words in the sen- 
tence, and then works left to right constructing addi- 
tional edges bottom-up. Each time an edge is added to 
the chart, the grammar is searched for rules whose last 
category on the right-hand side matches the edge just  
added to the chart, and the chart is scanned back to the 
left for a contiguous sequence of edges that  match the 
remaining categories on the right-hand side of the rule. 
If these are found, then an edge for the category on the 
left-hand side of the rule is added to the chart, span- 
ning the segment of the input covered by the sequence 
of edges that  matched the right-hand side of the rule. 

When measured with our test grammar and test cor- 
pus, our implementation of this algorithm is almost nine 
times slower than our original shift-reduce parser. We 
conjectured that  one significant problem was the uncon- 
strained hypothesization of empty categories or "gaps." 
Our grammar,  like many others, allows certain linguis- 
tic phrase types to be realized as the empty string in 
order to simplify the overall structure of the grammar. 
For example, "What  cities does American fly to from 
Boston?" is analyzed as having an empty noun phrase 
between "to" and "from," so that  most of the analysis 
can be carried out using the same rules that  are used to 
analyze such sentences as "Does American fly to Dallas 
from Boston?" Because empty categories are not di- 
rectly indicated in the word string, our naive bottom-up 
parser must hypothesize every possible empty category 
at every point in the input. 

To address this point, we applied a well-known trans- 
formation to the grammar to eliminate empty categories 
by adding additional rules. For each type of empty cat- 
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egory, we found every case where it would unify with a 
category on the right-hand side of a rule, performed the 
unification, and deleted the unified empty category from 
the rule. For example, if B can be an empty category 
then from A ~ B C  we would derive the rule A ~ C, 
taking into account the results of unification. When all 
such derived rules are added to the grammar, all the 
empty categories can be eliminated. 

Performing this transformation both reduced the num- 
ber of edges being generated and speeded up parsing, 
but  only by about 20 percent in each case. We observed 
that  the elimination of empty categories had resulted in a 
grammar with many more unit production rules than the 
original grammar; that  is, rules of the form A ~ B. This 
occurred because of the large number of cases like the 
one sketched above, where an empty category matches 
one of the categories on the right-hand side of a binary 
branching rule. We determined that  the application of 
these unit production rules accounted for more than 60 
percent of the edges constructed by the parser. 

Our next thought,  therefore, was to try to transform 
the grammar to eliminate unit productions as well, but 
this process turned out to be, in practical terms, in- 
tractable. Eliminating empty categories had increased 
the grammar size but only by about half. When we 
tried to eliminate unit productions, processing the first 
four (out of several hundred) grammar rules took a cou- 
ple of hours of computation time and generated more 
than 1800 derived rules. We abandoned this approach, 
and instead we eliminated the unit productions from the 
grammar by compiling them into a "link table." The 
link table is basically the transitive closure of the unit 
productions, so it is, in effect, a specification of the unit 
derivations permit ted by the grammar, omitting the in- 
termediate nodes. This table is then used by the parser 
to find a path via unit productions between the edges in 
the chart and the categories that  appear in the nonunit 
grammar rules. This is effectively the same as the CKY 
algorithm except that  edges that  would be produced by 
unit derivations are never explicitly created. 

We also made some modifications to speed up selec- 
tion of applicable grammar rules. We added a "skeletal" 
chart that  keeps track of the sequences of general cat- 
egories (ignoring features) that  occur in the chart (or 
could be generated using the link table), with the re- 
striction that  the only sequences recorded are those that  
are initial segments of the sequence of general categories 
(ignoring features) on the right-hand side of some gram- 
mar rule. Each grammar rule is itself indexed by the 
sequence of general categories occuring on its right-hand 
side. For example, if there is some sort of verb spanning 
position x through position y in the input and some some 
sort of noun phrase spanning position y through position 
z, the skeletal chart would record that  there is a sequence 
of type v.xtp ending at point z .  Thus, when the parser 
searches for applicable rules to apply to generate new 
edges in the chart at a particular position, it only con- 
siders rules which are indexed by an entry in the skeletal 
chart for that  position. 

Eliminating unit productions by use of the link ta- 
ble and accessing the grammar rules through the skele- 
tal chart made the parser substantially faster, but this 
parser is still almost three times slower than the shift re- 
duce parser on our test corpus using our test grammar. 
At this point, we seemed to have reached a practical 
limit to how fast we could make the parser while still 
constructing essentially every possible edge bottom-up. 
This parser is in fact almost twice as fast as the shift- 
reduce parser in terms of time per edge constructed, but 
it constructs more than four times as many edges. 

Making Limited Use  of Context  
Our limited success in constructing a purely bottom- 
up parser that  would be efficient enough for practical 
use with our unification grammar led us to reconsider 
whether it is really necessary to compute every phrase 
that  can be identified bot tom-up in order to use the out- 
put  of the parser in a robust interpretation scheme. We 
again focused our attention on syntactic gaps. Although 
we had dealt effectively with explicitly empty categories 
and with categories generated by the unit productions 
created by the elimination of empty categories, we knew 
that  many of the additional edges the bottom-up parser 
was creating were for larger phrases that  implicitly con- 
tain gaps (e.g., a transitive verb phrase with a missing 
object noun phrase), even when there is nothing in the 
preceding context to license such a phrase. We reasoned 
that  there is little benefit to identifying such phrases, 
the vast majori ty of which would be spurious anyway, 
because unless we can determine the semantic filler of a 
gap, the phrase containing it is unlikely to be of any use 
in robust interpretation. 

With this rationale, we have implemented several vari- 
ants of a bot tom-up parsing algorithm that  allows us to 
use limited top-down constraints derived from the left- 
context to block the formation of just  the phrases that  
implicitly contain gaps not licensed by the preceding con- 
text. For example, in the sentence we previously dis- 
cussed, "What  cities does American fly to from Boston?" 
the interrogative noun phrase "what cities" signals the 
possible presence of a noun phrase gap later in the sen- 
tence. This licenses 

fly to 
fly to from Boston 
American fly to from Boston 
does American fly to from Boston 

all as being legitimate phrases that  contain a noun 
phrase gap. Without  that  preceding context, we would 
not want to consider any of these word strings as legiti- 
mate phrases. 

To implement this approach we partitioned the set 
of grammatical categories into context-independent and 
context-dependent subsets, with the context-dependent 
categories being those that  implicitly contain gaps. 
Defining which categories those are is relatively easy in 
our grammar, because we have a uniform treatment of 
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"wh" gaps, usually called "gap-threading" [5], so that  
every category that  implicitly or explicitly contains a 
gap has a feature g a p s i n  whose value is something other 
than n u l l .  We have a similar t rea tment  of the fronting of 
auxiliary verbs in yes/no questions, controlled by the fea- 
ture v s t o r e .  Finally, an additional quirk of our g rammar  
required us to t reat  all relative clauses as context depen- 
dent categories. So we defined the context-independent 
categories to be those that  

• Have n u l l  as the value of g a p s i n  or lack the feature 
g a p s i n ,  and 

• Have n u l l  as the value of v s t o r e  or lack the feature 
vstore,  and 

• Are not relative clauses. 

All other categories are context dependent. 
These is, of course, s imply one of any number  of 

ways tha t  categories could be divided between context- 
independent and context-dependent.  Our ability to 
change these declarations gives us an interesting pa- 
rameterizat ion of our parser, such that  it can be run 
as anything from a purely bo t tom-up  parser, if all cat- 
egories are declared context-independent,  to one that  
uses m a x i m u m  prediction based on left context like our 
shift-reduce parser, if all categories are declared context- 
dependent. I t  would also be possible to derive a candi- 
date set of context-dependent categories automatical ly  
or semi-automatical ly  from a corpus. The candidates for 
context-dependent categories would be those categories 
that  most  often fail to contribute to a complete parse 
when found bot tom-up.  1 

The basic parsing algori thm remains the same as in 
the purely bo t tom-up  parsers, with a few modifications. 
After each rule application the resulting category is 
checked to see whether it unifies with one of the context- 
independent categories. I f  so, the edge for it is added to 
the chart with no further checking. I f  not, a test is made 
to see whether the category is predicted by the preceding 
left context. I f  so, it is added to the chart; otherwise, it 
is rejected. 

The main complexities of the algori thm are in the gen- 
eration and testing of predictions. Whenever an edge is 
added to the chart, predictions are generated tha t  are 
similar to "dotted rules" or "incomplete edges," except 
that  predictions include only the remaining categories to 
be matched,  since predictions are not used in a reduc- 
tion step as they are in other algorithms. So, if we have 
a rule of  the form A ~ B C  and we add an edge for B to 
the chart, then we may  add a prediction for C following 
B. Whether  the prediction is made or not depends on a 
number  of things, including whether the left-hand side of 
the rule is context-dependent or independent. In the cur- 
rent example,  if A is a context-independent category, we 
proceed with the prediction; otherwise, we must  check 
whether A itself is predicted. In addition, predictions 

X Tb_is idea arose in response to a quest ion posed by Mitch 
Marcus. 

can arise from matching par t  of a previous prediction. 
If  we have predicted A B  and we find A, then we can 
predict B. 

In order to minimize the number  of predictions made, 
we make two impor tan t  checks. First we check that  the 
prediction actually predicts some context-dependent cat- 
egory. Second, we do a "follow" check, to make sure that  
the predicted category might  occur, given the next word 
in the input stream. There are a few other minor re- 
finements to limit the number  of predictions, but these 
are the most  impor tant  ones. In order to check whether 
a context-dependent category is predicted by a certain 
prediction, we consult a "left-corner teachabili ty table" 
that  tells us whether the category we are testing is a 
possible left corner of the predicted category. 

When we tested this algorithm, we found that  it dra- 
matical ly reduced the number  of edges generated, and 
equally dramatical ly improved parse time. We noted 
above tha t  our best purely bo t tom-up  parser was about  
three times slower tha t  the shift-reduce parser. This 
algori thm proved to be 20 percent faster than the shift- 
reduce parser on our test corpus and test grammar .  

Examinat ion of the number  and type of edges pro- 
duced by this weakly-predictive parser led us to ques- 
tion whether all the refinements that  we had made to 
the purely bo t tom-up  parsers, in order to deal with the 
enormous number  of edges they produced, were still nec- 
essary. We have performed a number  of experiments 
removing some of those refinements, with interesting re- 
sults. The main effect we observed was tha t  using the 
link table to avoid creating edges for categories produced 
by unit derivations is no longer productive. By using the 
link table to create explicit edges for those categories, so 
that  we do not have to use the link table at the t ime 
we match  the right-hand sides of rules against the chart, 
we got a parser tha t  was twice as fast as the shift re- 
duce parser. We also found tha t  leaving empty  cate- 
gories in the g r ammar  actually speeded-up this version 
of the parser very slightly (about  4 percent). More edges 
and predictions were generated for the empty  categories, 
but this was apparent ly  more than compensated for by 
the reduction in the number  of g r a m m a r  rules. 

C o n c l u s i o n s  
This paper  is, in effect, a narrat ive of an exercise in al- 
gori thm design and software engineering. Unlike most 
algorithms papers, it contains a great deal of detail on 
what  did not work, or at least what  did not work as 
well as had been hoped. It  is also notable because it 
talks about  practical, rather  than theoretical efficiency. 
Most papers on parsing algori thms focus on theoretical 
worst-case t ime bounds. Although we have not analyzed 
it, it seems likely tha t  all the algorithms we tried have 
the same polynomial  t ime bound, but  the difference in 
the constants of proport ional i ty  involved makes all the 
difference between the algori thms being usable and not 
usable. Also, unlike most  experimental  results on pars- 
ing, ours are based on a real g rammar ,  being developed 
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for a real application, not a toy grammar written only for 
the purposes of testing parsing algorithms. It is unlikely 
that the problems with gaps that are absolutely crucial 
in this exercise would arise in such a toy grammar. 

In terms of concrete results, the relative performance 
of several of the parsers is summarized in the table below. 

Parser Time # Edg~ 
shift-reduce 1.00 1.00 
naive bottom-up 8.81 12.52 
best bottom-up 2.95 4.62 
best predictive 0.48 1.79 

e s  Time/Edge 
1.00 
0.70 
0.63 
0.27 

Notice that all the new parsers are significantly faster 
than the shift-reduce parser in terms time per edge gen- 
erated. This is undoubtedly due to the high overhead of 
the prediction mechanism used in the shift-reduce parser. 
It is also interesting to note that among the new parsers, 
the faster the overall speed of the parser, the faster the 
time per edge, also. This may be somewhat surprising, 
because of all the additional mechanisms added to the 
last two parsers to reduce the number of edges, compared 
to the naive bottom-up parser. Evidently the benefits of 
having a smaller chart to search outweighed the costs of 
the additional mechanism, even on the basis of time per 
edge. 

In summary, our first attempt to produce a bottom-up 
parser was nine times slower than our baseline system; 
our last attempt was twice as fast. Thus we achieved 
a speed up of a factor of 18 over the course of these 
experiments. We finished not only with a parser that 
produced the additional possible phrases that we wanted 
for robust interpretation, but did so much faster than the 
parser we started with. Furthermore, we have developed 
what seems to be an important new parsing method for 
grammars that allow gaps, and perhaps more generally 
for grammars with a set of categories that can be divided 
into those constrainted mainly internally and those with 
important external constraints. 
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