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Abstract 

This paper presents a decision-tree 
approach to the problems of part-of- 
speech disambiguation and unknown 
word guessing as they appear in Modem 
Greek, a highly inflectional language. The 
learning procedure is tag-set independent 
and reflects the linguistic reasoning on the 
specific problems. The decision trees 
induced are combined with a high- 
coverage lexicon to form a tagger that 
achieves 93,5% overall disambiguation 
accuracy. 

1 Introduction 

Part-of-speech (POS) taggers are software 
devices that aim to assign unambiguous 
morphosyntactic tags to words of electronic 
texts. Although the hardest part of the tagging 
process is performed by a computational 
lexicon, a POS tagger cannot solely consist of a 
lexicon due to: (i) morphosyntactic ambiguity 
(e.g., 'love' as verb or noun) and (ii) the 
existence of unknown words (e.g., proper nouns, 
place names, compounds, etc.). When the 
lexicon can assure high coverage, unknown 
word guessing can be viewed as a decision taken 
upon the POS of open-class words (i.e., Noun, 
Verb, Adjective, Adverb or Participle). 

Towards the disambiguation of POS tags, 
two main approaches have been followed. On 
one hand, according to the linguistic approach, 
experts encode handcrafted rules or constraints 
based on abstractions derived from language 
paradigms (usually with the aid of corpora) 
(Green and Rubin, 1971; Voutilainen 1995). On 
the other hand, according to the data-driven 

approach, a frequency-based language model is 
acquired from corpora and has the forms of n- 
grams (Church, 1988; Cutting et al., 1992), rules 
(Hindle, 1989; Brill, 1995), decision trees 
(Cardie, 1994; Daelemans et al., 1996) or neural 
networks (Schmid, 1994). 

In order to increase their robusmess, most 
POS taggers include a guesser, which tries to 
extract the POS of words not present in the 
lexicon. As a common strategy, POS guessers 
examine the endings of unknown words (Cutting 
et al. 1992) along with their capitalization, or 
consider the distribution of unknown words over 
specific parts-of-speech (Weischedel et aL, 
1993). More sophisticated guessers further 
examine the prefixes of unknown words 
(Mikheev, 1996) and the categories of 
contextual tokens (Brill, 1995; Daelemans et aL, 
1996). 

This paper presents a POS tagger for Modem 
Greek (M. Greek), a highly inflectional 
language, and focuses on a data-driven approach 
for the induction of decision trees used as 
disambiguation/guessing devices. Based on a 
high-coverage 1 lexicon, we prepared a tagged 
corpus capable of showing off the behavior of 
all POS ambiguity schemes present in M. Greek 
(e.g., Pronoun-Clitic-Article, Pronoun-Clitic, 
Adjective-Adverb, Verb-Noun, etc.), as well as 
the characteristics of unknown words. 
Consequently, we used the corpus for the 
induction of decision trees, which, along with 

1 At present, the lexicon is capable of assigning full 
morphosyntactic attributes (i.e., POS, Number, 
Gender, Case, Person, Tense, Voice, Mood) to 
-870.000 Greek word-forms. 
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the lexicon, are integrated into a robust POS 
tagger for M. Greek texts. 

The disambiguating methodology followed is 
highly influenced by the Memory-Based Tagger 
(MBT) presented in (Daelemans et aL, 1996). 
Our main contribution is the successful 
application of the decision-tree methodology to 
M. Greek with three improvements/custom- 
izations: (i) injection of linguistic bias to the 
learning procedure, (ii) formation of tag-set 
independent training patterns, and (iii) handling 
of  set-valued features. 

2 Tagger Architecture 

Figure 1 illustrates the functional components of 
the tagger and the order of  processing: 

Raw Text 

- -  I I I words with one tag I I I re°re 
un~ownl I ~an w°r , 4;; 

Disambiguator I 
t a g s "  I &Guesser I 

I 
words with one tag 

Ta ed Text 

Figure 1. Tagger Architecture 

Raw text passes through the Tokenizer, where it 
is converted to a stream of tokens. Non-word 
tokens (e.g., punctuation marks, numbers, dates, 
etc.) are resolved by the Tokenizer and receive a 
tag corresponding to their category. Word tokens 
are looked-up in the Lexicon and those found 
receive one or more tags. Words with more than 
one tags and those not found in the Lexicon pass 

through the Disambiguator/Guesser, where the 
contextually appropriate tag is decided/guessed. 

The Disambiguator/Guesser is a 'forest' of 
decision trees, one tree for each ambiguity 
scheme present in M. Greek and one tree for 
unknown word guessing. When a word with two 
or more tags appears, its ambiguity scheme is 
identified. Then, the corresponding decision tree 
is selected, which is traversed according to the 
values of morphosyntactic features extracted 
from contextual tags. This traversal returns the 
contextually appropriate POS. The ambiguity is 
resolved by eliminating the tag(s) with different 
POS than the one returned by the decision tree. 
The POS of  an unknown word is guessed by 
traversing the decision tree for unknown words, 
which examines contextual features along with 
the word ending and capitalization and returns 
an open-class POS. 

3 Training Sets 

For the study and resolution of lexical ambiguity 
in M. Greek, we set up a corpus of 137.765 
tokens (7.624 sentences), collecting sentences 
from student writings, literature, newspapers, 
and technical, financial and sports magazines. 
We made sure to adequately cover all POS 
ambiguity schemes present in M. Greek, without 
showing preference to any scheme, so as to have 
an objective view to the problem. Subsequently, 
we tokenized the corpus and inserted it into a 
database and let the lexicon assign a 
morphosyntactic tag to each word-token. We did 
not use any specific tag-set; instead, we let the 
lexicon assign to each known word all 
morphosyntactic attributes available. Table 1 
shows a sample sentence after this initial tagging 
(symbolic names appearing in the tags are 
explained in Appendix A). 

2638 
2638 

2638 
2638 
2638 
2638 
2638 
2638 

Table 1. An example-sentence from the tagged corpus 

1 Ot The Art (MscFemSglNom) 
2 axuvff]o~t~ answers ......... vrb(,B_SglActPS£sjv + iB~,SglKctFutlnd)+ 

Nra% ( FemP1 rNomAc cVoc) 
3 ~oI) of " Prn ( C MScNtrsngGen)- +~ Clt + Art (MscNtrSngGen) 
4 ~. Mr. Abr 

5 n = ~ 0 ~ o ~  eap,dopoulos "ou" Cap N~ + vrb + Adj + Pep +Aav 
6 .illaV were Vrb (-c--sg! ~ir I c~Ind!i .,_i~i/, 
7 aa~iq clear Adj (MscFemPlrNomAccVoc) 
8 I . ! 

N1212 

Art 

Nnn 
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Table 2. A fragment from the training set Verb-Noun 
.Examplel ~: .~.~::~,~i:.~:::.~::~::~:: ~I ::~ :i:~:::~.i~ ~ ~:-~:< ~./Tiig~,.:.. ~ :S ,.;;;.i:~ ~ ~: , ; ; / " [ M a n u i l  
: i~iD~.:i:l:~,i:~i~';~::;::i~i:ii%~!::~:~¢~J~":.~~::~i~ :~i~:~i~.': !~:.~ i:::~ :~::~i':i~i~. :~".;.~il;:.,;~< :!'~ ;: "?~::' '.~::!;~ ~ s:~-:ii'.:. ~-.'~'~'.~.~'.:~ ;~:~:!.:',~t~-'::i.'~ ~. l 

1 Adj (FemSglNomAcc) ;Vrb(_B_SglPntActZmv) + ~Prn( C FemSglGen) + Clt + Nnn 
Nnn (FemSglNomAccVoc) ~rt ( FemSglGen ) 

Nnn (FemSglNomAccVoc) 

" "  " i  iqzm "+ V r b  + ' A d j  + - P e p  !Vrb  ( _ B _ S g l F u t P s t A c t I n d S j v )  + i , ,  . " N ' ~ " -  
. + Adv Nnn (FemPlrNomAccVoc) 

4 Prn (_A_SglGenAcc) + Vrb (_B_SglFutPstActIndSjv) + Adj (FemSglNomAccVoc) Vrb , 
............ Pps ............ Nnn ( Nt rSgl P i rNomGenAccVoc ) 

5 A r t  (FemPlrAcc) .................... ~¢r b 'i-_B~Sg-i-~ £~P" -s tJ%c-E Z nclS jv ~ - ¥ ......... ~ p~~-c"fise~Er~i-6%n3 "~" -6iE- "i~ " 
Nnn(FemPlrNomAccVoc) ',+ Art (MscNtrSglGen) 

.... 6 " Pci .................. Vrb (B_SglPntFcsFutPstActIndSjv) !Prn (A_SglGenAcc) + Pps Vrb 
~+ Nrns (MscSglNom) 

.... 7 ................... 3/rb (B_SglFutPstActIndSjv) + ~rb (_C_PlrPntFcsActIndSjv) ..... N~-~ 
Nnn ( FemPlrNomAccVoc ) 

' • ' Vrb 8 Pcl ~Vrb (_B_SglFutPstActIndSjv) + i 
Nnn ( Nt rSgl P1 rNomGenAc cVoc) ! 

9 Adj (FemSglNomAcc) Nrb (_C_SglPntFcsActIndSjv) + ~t (MscSglAcc + Nnn 
.l~nn (FemSglNomAccVoc) ~t rSglNomAcc ) 

• 10 Pcl + Adv Mrb( B SglPntFcsFutPstActXndSjv)~ ................. Vrb 
: i+ Nnn (MscSglNom) '~ 

To words with POS ambiguity (e.g., tokens #2 
and #3 in Table 1) we manually assigned their 
contextually appropriate POS. To unknown 
words (e.g., token #5 in Table 1), which by 
default received a disjunct of open-class POS 
labels, we manually assigned their real POS and 
declared explicitly their inflectional ending. 

At a next phase, for all words relative to a 
specific ambiguity scheme or for all unknown 
words, we collected from the tagged corpus their 
automatically and manually assigned tags along 
with the automatically assigned tags of their 
neighboring tokens. This way, we created a 
training set for each ambiguity scheme and a 
training set for unknown words. Table 2 shows a 
10-example fragment from the training set for 
the ambiguity scheme Verb-Noun. For reasons 
of space, Table 2 shows the tags of only the 
previous (column Tagi_l) and next (column 
Tagi+~) tokens in the neighborhood of an 
ambiguous word, whereas more contextual tags 
actually comprise a training example. A training 
example also includes the manually assigned tag 
(column Manual Tagi) along with the 
automatically assigned tag 2 (column Tagi) of the 
ambiguous word. One can notice that some 
contextual tags are missing (e.g., Tagi_~ of  
Example 7; the ambiguous word is the first in 
the sentence), or some contextual tags may 

exhibit POS ambiguity (e.g., Tagi+l of Example 
1), an incident implying that the learner must 
learn from incomplete/ambiguous examples, 
since this is the case in real texts. 

If we consider that a tag encodes 1 to 5 
morphosyntaetic features, each feature taking 
one or a disjunction of 2 to 11 values, then the 
total number of different tags counts up to 
several hundreds 3. This fact prohibits the feeding 
of the training algorithms with patterns that have 
t h e  f o r m :  (Tagi_2, Tagi_b Tagi, Tagi.~, Manual_Tagi),  

which is the ease for similar systems that learn 
POS disambiguation (e.g., Daelemans et al., 
1996). On the other hand, it would be inefficient 
(yielding to information loss) to generate a 
simplified tag-set in order to reduce its size. The 
'what the training patterns should look like' 
bottleneck was surpassed by assuming a set of 
functions that extract from a tag the value(s) of 
specific features, e.g.: 
Gender(Art (MscSglAcc + NtrSglNomAcc)) = 

MSC + Ntr 

With the help of these functions, the training 
examples shown in Table 2 are interpreted to 
patterns that look like: 

(POS(Tagi_2), POS(Tagi_l), Gender(Tagi), POS(TagH), 
Gender(Tagi+l), Manual_Tagi),  

2 In case the learner needs to use morphosyntactic 
information of the word being disambiguated. 

3 The words of the corpus received from the lexicon 
690 different tags having the form shown in Table 2. 

136 



Proceedings of EACL '99 

that is, a sequence of feature-values extracted 
from the previous/current/next tags along with 
the manually assigned POS label. 

Due to this transformation, two issues 
automatically arise: (a) A feature-extracting 
function may return more than one feature value 
(as in the Gander(...) example); consequently, 
the training algorithm should be capable of 
handling set-valued features. (b) A feature- 
extracting function may return no value, e.g. 
Gender(Vrb( C PlrPntkctlndSjv)) = None, 

thus we added an extra value - the value None-- 
to each feature 4. 

To summarize, the training material we 
prepared consists of: (a) a set of  training 
examples for each ambiguity scheme and a set 
of training examples for unknown words 5, and 
(b) a set of features accompanying each 
example-set, denoting which features (extracted 
from the tags of  training examples) will 
participate in the training procedure. This 
configuration offers the following advantages: 

1. A training set is examined only for the 
features that are relative to the 
corresponding ambiguity scheme, thus 
addressing its idiosyncratic needs. 

2. What features are included to each feature- 
set depends on the linguistic reasoning on 
the specific ambiguity scheme, introducing 
this way linguistic bias to the learner. 

3. The learning is tag-set independent ,  since it 
is based on specific features and not on the 
entire tags. 

4. The learning of a particular ambiguity 
scheme can be fine-tuned by including new 
features or excluding existing features from 
its feature-set, without affecting the learning 
of  the other ambiguity schemes. 

4 Decision T r e e s  

4.1 Tree Induct ion 

In the previous section, we stated the use of  
linguistic reasoning for the selection of  feature- 

4 e.g.: Gender = {Masculine, Feminine, Neuter, None}. 
5 The training examples for unknown words, except 
contextual tags, also include the capitalization feature 
and the suffixes of unknown words. 

sets suitable to the idiosyncratic properties of  the 
corresponding ambiguity schemes. 

Formally speaking, let FS be the feature-set 
attached to a training set TS. The algorithm used 
to transform TS into a decision tree belongs to 
the TDIDT (Top Down Induction of  Decision 
Trees) family (Quinlan, 1986). Based on the 
divide and conquer principle, it selects the best 
Fbe, t feature from FS, partitions TS according to 
the values of  Fbest and repeats the procedure for 
each partition excluding Fbest from FS, 
continuing recursively until all (or the majority 
of) examples in a partition belong to the same 
class C or no more features are left in FS. 

During each step, in order to find the feature 
that makes the best prediction of class labels and 
use it to partition the training set, we select the 
feature with the highest gain ratio, an 
information-based quantity introduced by 
Quinlan (1986). The gain ratio metric is 
computed as follows: 

Assume a training set TS with patterns 
belonging to one of  the classes C1, C2, ... Ck. 
The average information needed to identify the 
class of  a pattern in TS is: 

info(TS) - £ freq(Cj,TS) = x log 2 (freq(Cj' TS)) 
j=l ITS I ITS I 

Now consider that TS is partitioned into TSI, 
TSz, ... TS.,  according to the values of  a feature 
F from FS. The average information needed to 
identify the class of  a pattern in the partitioned 
TS is: 

info F (TS ) = £ 1 T S l  I x i n f o ( T S i )  

i=l [TSI 
The quantity: 

gain(F) = info(TS) - info F (TS)  

measures the information relevant to 
classification that is gained by partitioning TS 
in accordance with the feature F. Gain ratio is a 
normalized version of  information gain: 

gain ratio(F) = gain(F) 
split info(F) 

Split info is a necessary normalizing factor, since 
gain favors features with many values, and 
represents the potential information generated by 
dividing TS into n subsets: 

split info(F) = - £  ITsi I× l°g2 (IIT:~ I) 
i=1 ITS[ [ 
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Taking into consideration the formula that 
computes the gain ratio, we notice that the best 
feature is the one that presents the minimum 
entropy in predicting the class labels of  the 
training set, provided the information of  the 
feature is not split over its values. 

The recursive algorithm for the decision tree 
induction is shown in Figure 2. Its parameters 
are: a node N, a training set TS and a feature set 
FS. Each node constructed, in a top-down left- 
to-right fashion, contains a default class label C 
(which characterizes the path constructed so 
far) and if  it is a non-terminal node it also 
contains a feature F from FS according to 
which further branching takes place. Every 
value vi of  the feature F tested at a non-terminal 
node is accompanied by a pattern subset TSj 
(i.e., the subset of  patterns containing the value 
vi). If  two or more values of  F are found in a 
training pattern (set-valued feature), the training 
pattern is directed to all corresponding 
branches. The algorithm is initialized with a 
root node, the entire training set and the entire 
feature set. The root node contains a dummy 6 
feature and a blank class label. 

InduceTree( Node N ,  TrainingSet TS,  FeatureSet FS ) 
Begin 

For each value v= of the feature F tested by node N Do 
Begin 

Create the subset TSl and assign it to vi; 
If TSi is empty Then continue; /* goto For */ 
If all pattems in TS~ belong to the same class C Then 

Create under vi a leaf node N' with label C; 
Else 
Begin 

Find the most frequent class C in TS~; 
If FS is empty Then 

Create under vj a leaf node N' with label C; 
Else 
Begin 

Find the feature F' ~th the highest gain ratio; 
Create under v ja non-terminal node N' with 
label C and set N' to test F'; 
Create the feature subset FS' = FS - {F'}; 
InduceTree( N ' ,  TSi ,  FS' ); 

End 
End 

End 
End 

Figure 2. Tree-Induction Algorithm 

6 The dummy feature contains the sole value None. 

4.2 Tree Traversal 

Each tree node, as already mentioned, contains a 
class label that represents the 'decision' being 
made by the specific node. Moreover, when a 
node is not a leaf, it also contains an ordered list 
of  values corresponding to a particular feature 
tested by the node. Each value is the origin of  a 
subtree hanging under the non-terminal node. 
The tree is traversed from the root to the leaves. 
Each non-terminal node tests one after the other 
its feature-values over the testing pattern. When 
a value is found, the traversal continues through 
the subtree hanging under that value. If  none of  
the values is found or the current node is a leaf, 
the traversal is finished and the node's  class 
label is returned. For the needs of  the POS 
disambiguation/guessing problem, tree nodes 
contain POS labels and test morphosyntactic 
features. Figure 3 illustrates the tree-traversal 
algorithm, via which disarnbiguation/guessing is 
performed. The lexical and/or contextual 
features of an ambiguous/unknown word 
constitute a testing pattern, which, along with 
the root of  the decision tree corresponding to the 
specific ambiguity scheme, are passed to the 
tree-traversal algorithm. 

ClassLabel TraverseTree( Node N, TestingPattem P ) 
Begin 

If N is a non-terminal node Then 
For each value vl of the feature F tested by N Do 

If vl is the value of F in P Then 
Begin 

N' = the node hanging under vj; 
Return TraverseTree( N ' ,  P ); 

End 
Retum the class label of N; 

End 

Figure 3. Tree-Traversal Algorithm 

4.3 Subtree Ordering 

The tree-traversal algorithm of  Figure 3 can be 
directly implemented by representing the 
decision tree as nested if-statements (see 
Appendix B), where each block of  code 
following an if-statement corresponds to a 
subtree. When an if-statement succeeds, the 
control is transferred to the inner block and, 
since there is no backtracking, no other feature- 
values of the same level are tested. To classify a 
pattern with a set-valued feature, only one value 
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from the set steers the traversal; the value that is 
tested first. A fair policy suggests to  test first the 
most important (probable) value, or, 
equivalently, to test first the value that leads to 
the subtree that gathered more training patterns 
than sibling subtrees. This policy can be 
incarnated in the tree-traversal algorithm if we 
previously sort the list of  feature-values tested 
by each non-terminal node, according to the 
algorithm of Figure 4, which is initialized with 
the root of  the tree. 

OrderSubtrees( Node N ) 
Begin 

If N is a non-terminal node Then 
Begin 

Sort the feature-values and sub-trees of node N 
according to the number of training pattems each 
sub-tree obtained; 
For each child node N' under node N Do 

OrderSubtrees( N' ); 
End 

End 

Figure 4. Subtree-Ordering Algor i thm 

This ordering has a nice side-effect: it 
increases the classification speed, as the most 
probable paths are ranked first in the decision 
tree. 

4.4 Tree Compaction 

A tree induced by the algorithm of  Figure 2 may 
contain many redundant paths from root to 
leaves; paths where, from a node and forward, 
the same decision is made. The tree-traversal 
definitely speeds up by eliminating the tails of  
the paths that do not alter the decisions taken 
thus far. This compaction does not affect the 
performance of the decision tree. Figure 5 
illustrates the tree-compaction algorithm, which 
is initialized with the root of  the tree. 

CompactTree( Node N ) 
Begin 

For each child node N' under node N Do 
Begin 

If N' is a leaf node Then 
Begin 

If N' has the same class label with N Then 
Delete N'; 

End 
Else 
Begin 

CompactTree( N' ); 
If N' is now a leaf node And 
has the same class label with N Then 

Delete N'; 
End 

End 
End 

Figure 5. Tree-Compaction Algorithm 

Table 3. Statistics and Evaluation Measurements 

POSAmbiguity Schemes 

Pronoun-Article 7,13 34,19 14,5 1,96 
Pronoun-Article-Clitic 4,70 22,54 39,1 4,85 
pron0un-Prep0sition 2,14 10,26 12,2 1,35 
Adjective-Adverb 1,53 7,33 31,1 13,4 
Pronoun-Clitic 1,4i 6,76 38,0 5,78 
Preposition-Particle-Conjuncti0n i,~21 ~ 4,89 20,8 8,94 

2 " 4 9  . . . .  1 2 , 1  6 ,93  Verb-Noun ....... 0<52 ........... 
Adje.ctive-Ad~ erb-NOun .... 0,51 .......... 2,44 ............. 5!,. 0 .... 30 ,4 
Adjective-~o~ 0~,46 .................... ~,20 ............... 38,2 . . . . . .  18~2 
P a r 6 i c i e - c o n  ~ u n c t i O n  . . . . . . . . . . . .  0,3.9 . . . . . . . .  ! ,8 .7  . . . . . . . .  I t 3 . 8 . .  1 , 3 8  
Adverb-Conjunction " 0,36 ....... 1,72 , 22,.8 " i~8,1 
Pronoun-Adverb 0,34 1,63 4,31 4,31 
Verb-Adverb 0,0"6 ..... 0,28 16,8 1,99 
Other 0,29 1,39 30,1 12,3 
Total POS Ambiguity 20,85 [ 24,1 5,48 
Unknown Words 2,53 1 38,6 15,8 

Totals 23,38 2 5 , 6  6 , 6 1  
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5 Evaluation 

To evaluate our approach, we first partitioned 
the datasets described in Section 3 into training 
and testing sets according to the 10-fold cross- 
validation methodL Then, (a) we found the most 
frequent POS in each training set and (b) we 
induced a decision tree from each training set. 
Consequently, we resolved the ambiguity of  the 
testing sets with two methods: (a) we assigned 
the most frequent POS acquired from the 
corresponding training sets and (b) we used the 
induced decision trees. 

Table 3 concentrates the results of our 
experiments. In detail: Column (1) shows in 
what percentage the ambiguity schemes and the 
unknown words occur in the corpus. The total 
problematic word-tokens in the corpus are 
23,38%. Column (2) shows in what percentage 
each ambiguity scheme contributes to the total 
POS ambiguity. Column (3) shows the error 
rates of method (a). Column (4) shows the error 
rates of method (b). 

To compute the total POS disambiguation 
error rates of the two methods (24,1% and 
5,48% respectively) we used the contribution 
percentages shown in column (2). 

6 Discussion and Future Goals 

We have shown a uniform approach to the dual 
problem of POS disambiguation and unknown 
word guessing as it appears in M. Greek, 
reinforcing the argument that "machine-learning 
researchers should become more interested in 
NLP as an application area" (Daelemans et al., 
1997). As a general remark, we argue that the 
linguistic approach has good performance when 
the knowledge or the behavior of  a language can 
be defined explicitly (by means of lexicons, 
syntactic grammars, etc.), whereas empirical 
(corpus-based statistical) learning should apply 
when exceptions, complex interaction or 
ambiguity arise. In addition, there is always the 
opportunity to bias empirical learning with 
linguistically motivated parameters, so as to 

7 In this method, a dataset is partitioned 10 times into 
90% training material and 10% testing material. 
Average accuracy provides a reliable estimate of the 
generalization accuracy. 

meet the needs of the specific language problem. 
Based on these statements, we combined a high- 
coverage lexicon and a set of empirically 
induced decision trees into a POS tagger 
achieving ~5,5% error rate for POS 
disambiguation and ~16% error rate for 
unknown word guessing. 

The decision-tree approach outperforms both 
the naive approach of  assigning the most 
frequent POS, as well as the ~20% error rate 
obtained by the n-gram tagger for M. Greek 
presented in (Dermatas and Kokkinakis, 1995). 

Comparing our tree-induction algorithm and 
IGTREE, the algorithm used in MBT 
(Daelemans et al., 1996), their main difference 
is that IGTREE produces oblivious decision 
trees by supplying an a priori ordered list of  best 
features instead of  re-computing the best feature 
during each branching, which is our case. After 
applying IGTREE to the datasets described in 
Section 3, we measured similar performance 
(-7% error rate for disambiguation and -17% 
for guessing). Intuitively, the global search for 
best features performed by IGTREE has similar 
results to the local searches over the fragmented 
datasets performed by our algorithm. 

Our goals hereafter aim to cover the 
following: 
• Improve the POS tagging results by: a) 

finding the optimal feature set for each 
ambiguity scheme and b) increasing the 
lexicon coverage. 

• Analyze why IGTREE is still so robust 
when, obviously, it is built on less 
information. 

• Apply the same approach to resolve Gender, 
Case, Number, etc. ambiguity and to guess 
such attributes for unknown words. 
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Appendix A: Feature Values/Shortcuts 
Part-Of-Speech = {Article/Art, Noun/Nnn, Adjective/Adj, 

Pronoun/Pm, VerbNrb, Pardciple/Pcp, Adverb/Adv, 
Conjunction/Cnj, Preposition/Pps, Particle/Pcl, Clitic/CIt} 

Number = {Singular/Sng, Plural/Plu} 
Gender = {Masculine/Msc, Feminine/Fern, Neuter/Ntr} 
Case = {Nominative/Nom, Genitive/Gen, Dative/Dat, 

Accusative/Acc, Vocative/Voc} 
Person = {First/A_, Second/B_, Third/C_} 
Tense = {Present]Pnt, Future/Fut, Future Perfect/Fpt, Future 

Continuous/Fcs, Past/Pst, Present Perfect/Pnp, Past 
Perfect/Psp} 

Voice = {Active/Act, Passive/Psv} 
Mood = {Indicative/Ind, Imperative/Imv, Subjanctive/Sjv} 
Capitalization = {Capital/Cap} 

Appendix B: A decision tree for the 
scheme Adverb-Adjective 

/* 'disamb_.AdvAdj.c' file, automatically generated from a 
training corpus *1 

#include "../tagger/tagger.h" 

int disamb_AdvAdj(void *'I'L) /* TL means Woken List' */ 
{ 

if(POS(TL, -1, Vrb)) /*-1: previous token */ 
if(POS(TL, 1, Nnn)) return Adj; /*+1: next token */ 
else return Adv; 

else if(POS('rL,-1, Pm)) 
if(POS(TL, 1, None)) return Adv; 
else if(POS(TL, 1, Pps)) retum Adv; 
else if(POS(TL, 1, Pcp)) return Adv; 
else retum Adj; 

else if(POS(TL, -1, Art)) return Adj; 
else if(POS(TL, -1, None)) 

if(POS(TL, 1, Nnn)) return Adj; 
else return Adv; 

else if(POS(TL, -1, Cnj)) 
if(POS(TL, 1, Nnn)) retum Adj; 
else return Adv; 

else if(POS(TL, -1, Adv)) 
if(POS(TL, 1, Nnn)) return Adj; 
else if(POS(TL, 1, Adv)) return Adj; 
else return Adv; 

else if(POS(TL, -1, Adj)) 
if(POS(TL, 1, Cnj)) return Adv; 
else if(POS(TL, 1, Pcp)) retum Adv; 
else retum Adj; 

else if(POS(TL, -1, Nnn)) 
if(POS(TL, 1, Nnn)) retum Adj; 
else if(POS(TL, 1, Exc)) return Adj; 
else return Adv; 

else if(POS(TL, -1, Pps)) 
if(POS(TL, 1, Pm)) return Adv; 
else if(POS(TL, 1, None)) return Adv; 
else if(POS(TL, 1, Art)) return Adv; 
else if(POS(TL, 1, Pcl)) return Adv; 
else if(POS(TL, 1, CIt)) return Adv; 
else if(POS(TL, 1, Vrb)) retum Adv; 
else if(POS(TL, 1, Pps)) return Adv; 
else if(POS('rL, 1, Pcp)) retum Adv; 
else return Adj; 

else if(POS(TL,-1, Pcl)) 
if(POS(TL, 1, Nnn)) return Adj; 
else if(POS('l'L, 1, Adj)) return Adj; 
else return Adv; 

else if(POS(TL,-1, Pcp)) 
if(POS('I'L, 1, Nnn)) return Adj; 
else if(POS(TL, 1, Vrb)) return Adj; 
else return Adv; 

else return Adv; 
} 
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