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A B S T R A C T  

This paper presents an experimental preference tool 
des!gned, implemented and tested m the Eurotra 
pro)ect. The mechanism is based on preference rules 
which can either compare subtrees pairwise or single 
out a subtree on the basis of some specified con- 
straints. Scoring permits combining the effects of 
various preference rules. 

T H E  P R O B L E M  

The aim of a translation system is to produce the 
correct translation of a given text. In Eurotra, where 
translation is split up into a series of mappings 
among intermediate levels of representation, pro- 
visional overgeneration is a necessary evil [Raw et 
al. 1989]: the closer to surface structure a level of  
representation is, the harder it becomes for the parser 
to produce an unambiguous result. In the Eurotra 
framework, the E-framework [Bech et al. 1989], 
overgeneration can be partially controlled by filters 
which describe parse trees that are to be discarded as 
not obeying some specified constraints. Thus, filters 
apply to individual objects and are meant to delete 
inherently wrong representations. But there are cases 
where the grammar produces multiple analyses of a 
given input because the input is ambiguous with re- 
spect to a given level. All of these analyses are in 
some sense correct, although further processing 
might discard some of them. Our aim was to design 
a preference mechanism able to choose the best 
among a set of acceptable candidates. 

O U R  V I E W  OF P R E F E R E N C E  

Preference has been defined in a number of ways, 
e.g. as a gradual fulfilment of semantic constraints 
[Fass andWilks 1983], as a lexically induced syn~c- 
tic bias [Ford et al. 1982], as a parsm[[ strategy in~-  
pendent of linguistic criteria [Frazler and Fodor 
1978, Pereira 1985], and as a system based on 
multiple judgements reflecting the complexity of psy- 
chological processes [Jackendoff 1985]. 

Our approach, which is greatly indebted to Jacken- 
dof f s  theory of preference rule systems, is based on 
the following assumptions: 

- Preference is a method which, on the basis of 
some preference criteria, chooses the best one 

among a set of possible interpretations 
which are all correct according to the 
grammar. 

- Each preference criterion is expressed as a set 
of statements, where a statement is either a 
binary relation between competing interpreta- 
tions or the description of a subtree which 
satisfies some defined criteria. 

- There is no unique preference criterion accor- 
ding to which the best interpretation can be 
chosen: preference criteria are multiple, and 
possibly contradictory. A preference mecha- 
nism must be able to accommodate such multi- 

~eCferYence criteria are heuristic principles 
which may vary according to the language and 
the text type: therefore, they are not hardwired 
m the system. 

In the previous Eurotra preference mechanism 
[Petitpierre et al. 1987], preference statements 

w e r e  only defined as binary relations between 
subtrees. Since comparing subtrees is a rather 
expensive operation from the computational point 
of view, and since a number of preference cnteria 
- e.g. the principle of right-low attachment - 
cannot be expressed in binary terms, we have 
allowed both binary and non-binary preference 
rules. The applicaaon algorithm of p-rules and 
the way in which various preference criteria are 
combined are also new w~th respect to the pre- 
vious system. 

T H E  M E C H A N I S M  P R O P O S E D  

The mechanism proposed is an independent 
module which is activated on the results output 
by the parser. The module consists of pre~r.ence 
rules of two possible kinds, which we call tnnary 
and unary rules. 

A binary rule establishes a preference relation 
between two correspondin~ (sub)trees (from here 
on, (sub)tree will be used m the sense of a repre- 
sentation of an interpretation or a part ot  m~s 
representation). A unary rule picks up a (sub)tree 
on the basis of i~s own properties, thus implicitly 
establishing a preference relation between this 
(sub)tree and all its competitors. Each preference 
rule - be it binary or unary - is associated with a 
score, which is assigned to the preferred (sub)tree 
as a result of the application of the rule. 
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Correspondences: The notion of correspondence 
between (sub)trees is central topreference rules of 
the binary type. A number of def'mitions of this con- 
cept can be envisaged: 

i. The correspondence between two (sub)trees is 
established by the user, who states that some 
specified contraints hold between parts of them. 

ii. A correspondence is only assumed to exist 
between full parse trees, and the correspondence 
between two subtrees is defined by specifying 
their derivation paths from the top node. 

iii. The system proauces a parse graph which will be 
a synthesis of the various parse trees, where parts 
common to several trees are shared; two subtrees 
correspond if they share a given part. 

The most challenging solution is (iii): we have not 
adopted it because o f  computational problems con- 
nected with the introduction of structure-sharing into 
.the E-framework. The easiest solution to implement 

(ii): this is the approach chosen in the earlier 
urotra preterence tool. The solution we have 

adopted ts (i), which unlike (ii) allows the user to 
state constraints on subtrees, regardless of their 
position in the complete parse tree. In other words, 
our system allows for very local and modular state- 
ments. 

Preference Rules: The user expresses preference 
statements through a set of binary or unary preferen- 
ce rules (p-rules). 

The syntax for a binary rule is 

RuleName ( Score ) = 
LHS >= RHS 
where 

Annotations. 

where: 
RuleName is a unique identifier used for trace 
purposes; 
Score is a positive integer which indicates how 
strong the relation of preference is; 
LHS and RHS (the left-hand side and the right- 
hand side of the rule) are the descriptions of the 
two (sub)trees to be compared; 

- >= is a preference sign that indicates which of the 
two (sub)trees is to ~e preferred; 
An.notations is a (possibly empty) set of constraints 
wmcn must hold between the constituents of the 
two (sub)trees to be compared. 

The syntax for a unary rule is 

RuleName ( Score ) = 
LHS 
where 

Annotations. 

where: 
- LHS is the description of the (sub)tree to be 

singled out (which we call the left-hand side to 
stress the parallelism with binary rules); 

- the other parts are as defined for binary rules. 

LttS and RHS are (sub)tree descriptions of any 
de.l~h and relevant parts of them may be labelled 
wtm r'rotog variables, called indexes. These labels 
are used to express simple or complex corresponden- 

ce constraints in the annotation part of the rule. A 
simple constraint states for instance that two 
indexed subtrees must or must not have the same 
structure. Simple constraints may be combined 
with the operators 'and" and 'or' to form complex 
constraints. Scores, which have the function of 
driving p-rule interaction, are positive integers. 
They may be either assigned by the user or 
generated automaucally on statistical grounds, as 
explained below. Examples of both rule types are 
given in the appendix. 

General Algorithm: All theparse trees have 
an initial null score before preference rules are 
applied. For each pair of trees, if they contain 
two subtrees respectively matching the LHS and 
the RHS of a binary p-rule, while the constraints 
in the annotation part of the rule hold, the rule 
applies. Similarly, for each parse tree, if a subtree 
matching the LHS of a unary b-rule can be 
extracted, and all the constraints expressed in the 
rule are satisfied, the rule applies. In both eases, 
as a result of p-rule applicatton, the score of the 
object that contains the preferred subtree is 
incremented by the score o f  the rule. 

When all binary rules have been tried out on 
all the possible pairs of trees in all the possible 
ways, and all unary rules have been fired on all 
the single trees, results are collected. All parse 
trees are partitioned into equivalence classes 
according to their score. Note that trees to which 
no preference rule has applied will belong to the 
lowest-ranking class: this is motivated by the 
assumption that unary rules prefer single trees 
over all the other members of the set of compe- 
ling trees. 

After this partial order has been established, all 
the trees but those belonging to the highest- 
ranking class are discarded. 

A possible enhancement to the expressive 
power of p-rules would be the introduction of 
negative scores, for cases where a p-rule 
describes an acceptable but not totally correct 
subtree. 

AN EXAMPLE 

The following set of p-rules are based on some 
of the criteria for the treatment of PP attachment 
described in [Hirst 1987]. Note that p-rule scores 
have been assigned manually, due to the small 
number of rules. 

pmod (8) = {cat=pp, sf-=mod} [PI: {cat=p}, 
NPI: {cat=np}] 

>= {cat=pp, sf=mod} [P2:{cat,---p}, 
NP2: {cat=np}] 

where PI=P2, NPI=NP2. 

In the rule above, 0 delimit a node in the tree, 
which in the E-framework is a set of attribute 
value pairs, [] following a given node enclose its 
daughters, = means equal to and ~= means 
different from. The rule prefers a valency-bound 
PP to a PP modifier. This is a very strong cri- 
terion, which can only be overridden by semantic 
principles: therefore, the rule has a high score. 
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plow (2)= {cat=nptt,[__, {cat=n], 

## {cat=pp], 
*{} ]. 

The rule gives 2 points to an attachment where a 
PP is placed under an NP node. Note that *0 means 
any number of (sub)trees, without any restriction, 
and ~ in front of a subtree means that this subtree 
is weakly dominated by the top node. Assuming the 
following two structures 

a) 
NP 
I 

N NP pp 

b) 
NP 
I 

N NP 
I 

N pp 

'plow' will only apply once to (a), but it would fire 
twice on (b), which will in the end collect the 
highest score. The rule implements in fact the 
pnnciple of right-low auachment. 

peoord (5) = {cat=?} 
[el:  {sf=conjunct}, 
C2: { sf=con]unct} ] 

where width(C1) = width(C2). 

The rule above assigns 5 points to a coordinated 
structure where the two conjuncts have the same 
number of terminals. Note that constraints are stated 
between nodes of two com~ting (sub)trees and not, 
as it was the case in pmod', between nodes 
belonging to the same (sub)tree. 

Objl: 

S 

I., 
V s u b ]  

diskutere np 
I 
n n 

Kommissionen forslag 

p 
fra 

obj/plow 
np 

I 
subj" 
np 
I 
compl 

np 
I 
n 

virksomhed 

To see how these p-rules work, we can apply 
them to the set of objects resulting from the 
analysis of the following three Danish sentences: 

O) "Kommissionen diskuterede et forslag fra 
virksomhederne om effektiv lcsning af 
problememe". 

fEN: The commission discussed a proposal by 
the companies for the effective solution of the 
problems). 

(2) "Virksomhederne deltager i programmet 
for denne periode". 

fEN: The companies take part in the pro- 
gramme for this period). 

(3) "Kommissionen kontrollerer finansieringen 
af virksomhederne og samarbeidet med in- 
dustrien". 

fEN: The commission controls the financing of 
the firms and the cooperation with industry). 

In all three cases the preference tool yields the 
correct result. The three preferred objects are 
shown below: p-rules that have applied are 
indicated on the top nodes of the relevant sub- 
trees. 

In accordance with the Eurotra linguistic 
model, object 1 and 2 below are dependency 
structures with a lowered governor, where the 
complements have been ordered in a canonical 
way and a series of phenomena (determinateness, 
verbal inflection, prepositions) have been featari- 
seal. What interests us here, however, is the way 
PPs have been analysed. Thus, note that for all 
the PPs in sentence (1), the system has been able 
to find valency-bound syntactic functions (either 
subject or prepositional objec0. 

pobj/pmod 
PP 
i 

p comp~ 
om np/plow 

I 
n Dobj mod 

losning pp/ImllOd ap 
I i 

p compT adj 
af np effektiv 

I 
n 

problem 
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Obj2: 

V 
deltage 

O~3:  

V 
kontrollere 

8 
I 

subj 
np 
I 
n 

virksomhed 

pobj 
PP 

eompl 
np/plow 
I 

n 
handlingsprogram 

P 
for 

mod 
PP 
I 

compl 
cardp 

t 
card 
1990 

8 
I 
s u b j  

np 
I 

Konuniaaionen conjunct 
np/plow 

I 

obJlp~oo~'d 
np 

I 
conjunct 
np/plow 

. n 

finansiering 
pp n 

p~bj/pm~d samarbeJde 

/ \ 
/ \ 

af virksomheder 

PP 

/ \ 
/ \ 

med industri 

Consequently, modifier interpretations have been 
dispreferred. In the case of sentence (2) instead, the 
final PP has been analysed as a modifier, and the 
correct attachment has been found by the principle of 
right-low attachment. Note also that, still in (2), the 
verb "deltage" requires an obligatory prepositional 
object, and therefore this syntactic function has not 
been established by preference. Finally, in (3) the 
correct attachment o f  the two PPs has been found 
due to the combined effect of all three rules. 

S C O R I N G  

Scoring is an important novelty proposed in our 
Stem to replace the rule ordering strategy in use in 

previous Eurotra preference tool. Whereas 
arbitrary decisions were made in the earlier tool in 
cases of contradictory preference criteria and 
mul.tiple matches between a rule and two (sub)trees, 
scoring permits us to control the interaction of pre- 
ference rules in a declarative way. However, there is 
a Iradeoff between the declarativeness permitted by 
a scoring system and the difficulty of finding the 
right sco~es for a p-rule set of  nontrivial coverage. 

In this section we show how optimum p-rule scores 
can be derived automatically. Starting from a set of 
p-rules and an initial set o f  objects ordered by the 
user, the system tries to compute optimum values for 
the p-rules in the set, on the assumption that they 
will hold for different sets of  objects. 

If Pi (i=l,...n) stands for the score of the i-th 
p-rule, then the j-th object is assigned a score Sj 
given by the following expression: 

(1) Sj = Plalj + p2a~ + ... + p,a~ (j=I,...N) 

where n is the number of existing p-rules, aij is a 
constant equal to the number of times p-rule i has 

applied to object j and N is the number of 
exmting objects. In other words, Sj stands for the 
final score totalled by a given object after all 
possible p-rules have applied to it as many times 
as possible. 

To compute optimum scores, an. arbi .W.ary high 
score is assigned to the best object(s) m me 
initial training corpus and a much lower one  m 
the rest. The set o f  equations (1) is transtormea 
then into an overdetermined system of N equa- 
tions with n unknowns - the p-rule scores - where 
N can be greater than n. The set of  equations (1) 
can be further decomposed and reformulatea as 
follows: 

Find x~ (i--1,...n÷l) such that, 

(2) xtav + x2a2, + ... + XnSnj " X n + l S j  = 0 , 

By comparing the set of equations (2) against 
the set (1), the following relation between me 
values of x i and p-rule scores is deduced: 

(3) Pi = x/xt~l) 

Therefore, we claim that problems (1) and (2) 
are equivalent. Now, problem (.2) h a s n o  exact 
solution whenever N is greater man n. rtowever, 
it can be solved by converting it into a constraint 
optimization problem whereby optimum scores 
for p-rules will emerge. Thus the set of equations 
(2) is rearranged by introducing, the erro~ ej 
(i=l,...N) and by imposing mat me sum ol  ml 
these errors is minimum. More precisely problem 
(2) takes now the following form: 

Find x~ (i=l,...n+l) such that 

ca2 + e= + ... + e m  ---> minimum 
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subject to the constraints 

(4) e i = xtali + x~%j + ... + x.~ - x~÷iS i (j=I,...N) 

xt2 + x ,  + . . .  x ( , ,  m = 1 

In the literature (cf. [Key & Marple 1981] and 
[Kunmr~an & Tufts 1982]), one of the most 
efficient techniques offered to the solution of the 
constraint optimization problem (4) is called Singular 
Value Decomposition (SVD). SVD provides an 
optimum set of x~ (i=l,...n+l) which guarantees 
minimum accumulated squared error. Thus the values 
of the scores p~ (i=l,...n) are computed in a straight- 
forward way from the x~ (i=l,...n+l) using equation 
(3). 

Note that SVD is a non-linear optimization tech- 
nique which provides the best set of parameters for 
a given training corpus. Therefore, it is " portant to 
apply it to a linguistically balanced corpus. More- 
over, for the produced result to be reliable, the 
existing number of equations N should be at least 
five to ten times bigger than the existing number of 
p-rules n. 

Although SVD provides an optimum set of p-rule 
scores, there is no guarantee that these scores are all 
positive. However, since p-rules express positive 
selection criteria, p-rnle scores must always be 
positive: the following paragraph proposes an 
lterative algorithm which computes p-rule scores 
guaranteeing their positiveness at the same time. 

The idea is that the set of SVD parameters xl 
(i=l,...n+l) and the N sets of parameters in the 
training corpus are uncorrelated sets, i.e. they do not 
belong to the same space section. If the SVD solu- 
tion set x~ (i=l,...n+l) is also included in the training 
set, the new SVD solution yi (i=l,...n+l) of the 
augmented training corpus willbe tmcorrelated to all 
the sets in the corpus. Consequently, Yi (i=l,...n+l) 
will also be uncorrelated to x L (i=l,...n+l). This 
means that not all the signs ofyi  (i=l,...n+l) will be 
identical to the signs of x~ (i=l,...n+l). If the y 
components are all positive or all negative, the 
algorithm ends successfully and positive p-rule 
scores are computed via equation (3). In all other 
cases, the set of y~ (i=l,...n+l) is also incorporated in 
the training corpus and a new SVD solution z~ 
(i=l,...n+l) is computed which is uncorrelated to 
both x~ and Yi (i=l,...n+l). The algorithm continues 
in a similar way by checking whether the signs of z~ 
(i=l,...n+l) are all the same or not: in the first case 
the algorithm ends successfully; in the second case 
the set of z~ (i=l,...n+l) is included in the corpus and 
a new SVD solution is computed. 

The algorithm will eventually come up with the 
desirable set of parameters when all alternatives have 
been exhausted throughout the precedin~ iterations. 
The time of convergence varies relattve to the 
number of parameters or, equivalently, to the number 
of p-rules, as well as the size of the training corpus. 
More precisely, the larger the number of p-rules, the 
longer it takes for the algorithm to converge, o n  the 
other hand, the larger the training corpus, the faster 
the time of convergence. The obtained solution is 
optimum given .the maposed constraint thai all p-rule 
scores are posinve. 

CONCLUSION 

It seems to us that two basic tendencies can be 
observed in the literature with respect to the 
treatment of preference. On the one hand, pre- 
ference is conceived of as an essentially lingutstic 
or psycholinguistic principle or sum of principles 
(of.  the LFG approach m [Ford et at. 1982]); 
although it has important consequences for the 
parser, preference ts not directly connected to a 
specific parsing method, o n  the other nano, 
preference has been studied in the context of 
parsing: in such Ireatments (el. [Pereira 1985]), 
preference amounts to a deterministic procedure, 
which is not necessarily motivated by linguistic 
evidence. In our approach preference is 
established on the basis of rules defined by the 
user and applied by a post-processor. We have in 
fact focussed on a method to express lin- 
guistically meaningful, preference statements 
rather than on a particular parsing strategy. . w e  
are aware of the fact that, in a system where 
parsing is seen as a constraint satisfaction 
problem, preference criteria of the type we are 
interested in can be treated on the same level as 
other linguistic constraints and used to resolve 
ambiguity at parse time (of. [Van Henteryck 
1989]). However, such an approach would have 
meant too radical a change to the underlying 
Eurotra formalism. 

In accordance with the general practice in 
Eurotra, our preference mechanism does not 
plead allegiance to any specific linguistic theory. 
We have, however, been influenced by a theoreti- 
cal framework, namely the theory o f  preference 
rule systems described in [Jackendoff 1985]. 
According to this framework, preference can only 
been decided on the basis of  a number of criteria, 
and a preference mechanism is not based on a 
dichotomy between correct and wrong results, but 
on a scale of degrees of acceptability. One of_our 
main concerns m designing the system, in tact, 
has been allowing various and even contradictory 
criteria to be combined in a declarative fashion. 
The use of scoring is in this sense crucial. 

The system has been implemented and suc- 
cessfully tested on real input which showed 
overgeneration due to PP and adverbial attach- 
ment, coordination, pronominal resolution and 
lexical ambiguity. Some testing results are given 
in the appendix. 
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APPENDIX 

TEST NUMBER 

NO. OF SENTENCES 
i i 1 ~ 1  

AVERAGE SENTENCE LENGTH IN WORDS 

grammar 
type 

with p-rules 

without p-rules 

Fig. 1. 

no. of I average analyses 
p-rules I no. per sentence 

average epu correct 
per sentence results 

iiiiiiiiii i i!iiiii!iii!iilli i !iii!!!!i!!i ii!iii ;i!iiiiii iii!!!iii iiiii iiiiiiiiiii  iiiiiilj iiiil iiiiii!iii   i!i iiiiiii 

Figure 1 shows the results obtained in a test carried 
out by Eurotra-IT (Dima group). The linguistic 
phenomena handled by p-rules included syntactic 
completeness check, ambiguity of semantic role 
~si .gnment for arguments, ambiguity of semantic 
m~_aing mr modifiers. The experiment was 
performed on a Sparkstation I (16 MB core memory) 
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