
Non-determinis t i c Recursive Ascent Parsing

Ren~ Leermakers

Phi l ips Research Labora to r i e s ,
P.O. Box 80.000, 5600 J A Eindhoven , T h e N e t h e r l a n d s

E -ma i l : l ee rmake@rose t t a .p r l . ph i l i p s .n l

A B S T R A C T

A purely functional implementat ion of LR-parsers is
given, together with a simple correctness proof. It is
presented as a generalization of the recursive descent
parser. For non-LR grammars the t ime-complexity of
our parser is cubic if the functions that consti tute the
parser are implemented as memo-functions, i.e. func-
tions that memorize the results of previous invocations.
Memo-functions also facilitate a simple way to construct
a very compact representation of the parse forest. For
LR(0) grammars, our algorithm is closely related to the
recursive ascent parsers recently discovered by Kruse-
man Aretz [1] and Roberts [2]. Extended CF grammars
(grammars with regular expressions at the right hand
side) can be parsed with a simple modification of the
LR-parser for normal CF grammars.

1 I n t r o d u c t i o n

In this paper we give a purely functional implementa-
tion of LR-parsers, applicable to general CF grammars.
It will be obtained as a generalization of the well-known
recursive descent parsing technique. For LR(0) gram-
mars, our result implies a determinist ic parser that is
closely related to the recursive ascent parsers discovered
by Kruseman Aretz [1] and Roberts [2]. In the gen-
eral non-deterministic case, the parser has cubic time
complexity if the parse functions are implemented as
memo-functions [3], which are functions that memorize
and re-use the results of previous invocations. Memo-
functions are easily implemented in most programming
languages. The notion of memo-functions is also used
to define an algorithm tha t constructs a cubic represen-
tation for the parse forest, i.e. the collection of parse
trees.

It has been claimed by Tomita that non-deterministic
LR-parsers are useful for natural language processing.
In [4] he presented a discussion about how to do non-
determinist ic LR-parsing, with a device called a graph-
s tructured stack. With our parser we show that no ex-
plicit stack manipulat ions are needed; they can be ex-
pressed implicitly with the use of appropria te program-
ming language concepts.

Most textbooks on parsing do not include proper
correctness proofs for LR-parsers, mainly because such
proofs tend to be rather involved. The theory of LR-
parsing should still be considered underdeveloped, for

this reason. Our presentation, however, contains a sur-
prisingly simple correctness proof. In fact, this proof is
this paper ' s major contribution to parsing theory. One
of its lessons is tha t the CF grammar class is often the
natural one to proof parsers for, even if these parsers are
devoted to some special class of grammars. If the gram-
marl is restricted in some way, a parser for general CF
grammars may have propert ies tha t enable smart imple-
mentat ion tricks to enhance efficiency. As we show be-
low, the relation between LR-parsers and LR-grammars
is of this kind.

Especially in natural language processing, s tandard
CF grammars are often too limited in their strong gen-
erative power. The extended CF grammar formalism,
allowing rules to have regular expressions at the right
hand side, is a useful extension, for tha t reason. It is not
difficult to generalize our parser to cope with extended
grammars, although the application of LR-parsing to
extended CF grammars is well-known to be problematic
[5].

We first present the recursive descent recognizer in
a way that allows the desired generalization. Then we
obtain the recursive ascent recognizer and its proof. If
the grammar is LR(0) a few implementat ion tricks lead
to the recursive ascent recognizer of ref. [1]. Subse-
quently, the time and space complexities of the recog-
nizer are analysed, and the algorithm for constructing
a cubic representation for parse forests is given. The
paper ends with a discussion of extended CF grammars.

2 R e c u r s i v e d e s c e n t

Consider CF grammar G, with terminals VT and non-
terminals V/v. Let V = VN U VT. A well-known top-
down parsing technique is the recursive descent parser.
Recursive descent parsers consist of a number of pro-
cedures, usually one for each non-terminal. Here we
present a variant that consists of functions, one for each
item (dotted rule). We use the unorthodox embracing
operator [.] to map each i tem to its function: (we use
greek letters for arbi t rary elements of V*)

[A - ~ a . ~] : N - - . 2 N

where N is the set of integers, or a subset (0...nm~x),
with nma= the maximum seutence length. The functions
are to meet the following specification:

[A --, a. l(0 = {Jl - * "

- 6 3 -

with x~...xn the sentence to be parsed. A recursive im-
p lementa t ion for these funct ions is given by (b • VT, B •
v,,)

[A --* a.](i) = {i}

[a --* a.b-r](i) = {jib = z i+, ^ j E [A ~ ab.-r](i + 1)}

[A ---, a .B-r](i) =

{Jl~ • [B ~ .~] (i)^ j • [A - ; ~a.-r](~)}
We keep to the cus tom of omi t t ing existential quantif i-
cation (here for k,/f) in def in i t ions of this kind.

The proof is e lementary and ba#ed on

3~(3 = x~+a-r A -r ~ * zi+~...~:s)V
3B-~$k(3 = B-r ^ B --~ 8 A 8 --;* z i+a . . . x~^
-r --~* 2;k+l...2~j)

If we add a g r a m m a r rule S ' --* S to G, with S ' ([V
then S --** x~...xn is equivalent to n • [S' --* .S](0).

The recursive descent recognizer works for any CF
g rammar except for g rammars for which ~ A ~ (A ---*
aAcr --** A3) . For such left-recursive g rammars the rec-
ognizer does not te rminate , as execution of [A --* .a](i)
will lead to a call of itself. The recognit ion is not a l inear
process in general: the funct ion calls [A --- a.B3"](i) lead
to calls [B --* ./i](i) for all values of ~ such tha t B ---,
is a g rammar rule.

3 T h e a s c e n t r e c o g n i z e r

One way to make the recognizer more determinis t ic is by
combining funct ions corresponding to a number of com-
pe t ing i tems into one funct ion. Let the set of all i tems
of G be given by I n . Subsets of I6; are called states, and
we use q to be an arb i t ra ry state, lWe associate to each
s ta te q a funct ion, re-using the above operator [.],

[q] : N ~ 2 I °×N

tha t meets the specification

[q](i) ---- {(A - - a . 3 , j) l A --. a . 3 • q ^ 3 --*" zi+~.. .xi}

As above, the funct ion reports which par ts of the sen-
tence can be derived. But as the funct ion is associated
to a set q of i tems, it has to do so for each i tem in
q. If we define the ini t ial s ta te q0 = {S' --* .S}, now
S --," x l . . .xn is equivalent to (S ' ---* .S ,n) • [q0](0).
Before proceeding, we need a couple of definitions.

Let in i (q) be the set of ini t ia l i tems for s ta te q, tha t
are derived from q by the closure operat ion:

in i (q) = { B --* .AIB - . A ^ A --* a . 3 • q A 3 = ¢ B-r}.

The double arrow =¢, denotes a lef t -most-symbol rewrit-
ing B a =e~ Cf la , using a non-e rule B ---, Cfl. The
t rans i t ion funct ion goto is defined by (B • V)

goto(q, B) = {A -* a B . 3] A --* a . B 3 • (q U in i (q))}

Also define

pop(A ---, a B . 3) = A --', a . B 3

l h s (A --* a. f l) = A

f i n a l (A --. a . 3) = (131 = 0)

with B E V, and 1/31 the number of symbols in 3 (with
H = 0). A recursive ascent recognizer may be obta ined
by relat ing to each s ta te q not only the above [q], bu t
also a function__ tha t we take to be the result of applying
opera tor [.] to the state:

[q] : V x N --* 2 I° xN

I t has the specification

[q](B,i) = {(A --* a . 3 , j) l A --* a .3 e qA
3 =~* B - r A T ---,* xi+a. . .x j}

For i >.nn (n is the sentence length) it follows tha t
[q](i) = [q](B,i) = $, whereas for i _< n the funct ions
are recursively implemented by

[q](i) = [q](x,+l, i + 1) u

{(1, j) I B --* .e e i n i (q) A (l , j) E - ~ (B , i)}U
{ (l , i) l I • q ^ f i n a l (l) }

[q](B, i) = { (pop(l) , J)l
(1,j) • [ooto(q, B)](i)^ pop(l) • q}U
{(I,4)1(J, k) • [goto(q, B) I ~ ^
pop(J) • in i (q) ^ (1, j) • [q](lhs(S), k)}

Proof:
Firs t we notice tha t

/8 "** xi+l . . -x j
3~(3 ~ * z i + l ' t ^ 7 ~ " z ,+2 . . . z j)v
3B~(3 ~ " B-r ^ B ~ c ^ -y --." z ,+~ . . . z j)v
(~ = ~ ^ i = j)

Hence

[q](i) =
{(A --* a.3,J) l (A --* a . 3 , j) • r ~ (z , + ~ , i + 1)}u
{(A --, ,~.3, J)l
B -.-. e A (A --, a . 3 , j) • [q] (B , i) }u
{(A --~ a . , i) l a --* a. • q}

This is equivalent to the earlier version because we may
replace the clause B ~ e by B ---, .e • ini(q) . Indeed,
if s ta te q has i tem A --* a . f l and if there is a left-most-
symbol der iva t ion /3 =~* B-r then all i tems B --* .A are
included in ini(q) .

For establ ishing the correctness of [q--] notice tha t
3 ~ * B3" either conta ins zero steps, in which case
3 = B'r , or it conta ins at least one step:

3.y (3 =~* B3" A 3' --*" xi+a ...zs) =
3~(3 = B-r ^ -r - - " x i+ l . . . z j)V
3ce.~k(~8 :=~* C - r A G --* B~S A~5 -.*" xi+ l . . .x~,A -r -'**
xk+l ...x j)

Hence [q](B, i) may be wri t ten as the un ion of two sets,
[q](B, i) = So USa:

So = {(A --~ a.B3",j)]
A ---. ct.B3" • q A - r ---** x s+l . . . x j }

S~ = { (a --. a . 3 , j) l A --* a .3 • q ^ 3 =~" C-r^
C ---* B~ ^ $ --** zi+l . . .xk ^ 3' --*" zk+l . . . z i} .

By the defini t ion of goto, if A ---, a .B- r • q then A --,
aB.-r • goto(q, B) . t lence, with the specification of [q],
So may be rewri t ten as

So = {(A --. a .B-r , j) IA --. a.B-r • q^
(A ---* aB.3" , j) • [goto(q, B)](i)}

- 6 4 -

The set $1 may be rewrit ten using the specification of
[q](C, k):

S1 : { (A -'~ a . ~ , j) l (A -~ a . ~ , j) E [q](C,k)A
C --* B6 A 6 --," xi+,. . .xk}.

Also, as before, ~ =~* C'r implies that all i tems C ~ .g
are in ini(q), and the existence of C -* .B~ in ini(q)
implies C ~ B.~ E goto(q, B):

Sx = {(A ~ a . ~ , j) l (A ~ ~ .B , j) E [q](C, k)A
C --~ .B~ E ini(q)A
(C --. B.6, k) ~ [goto(q, B)](i)}.

n

In the computat ion of [q0](0), functions are needed
only for states in the canonical collection of LR(0) states
[6] for G, i.e. for every s tate that can be reached from the
initial s ta te by repeated application of the goto function.
Note tha t in general the s ta te ¢ will be among these, and
that both [¢](i) and [g](B, i) are empty sets for all i _> 0
and B E V.

4 D e t e r m i n i s t i c variants

One can prove that , if the grammar is LR(0), each rec-
ognizer function for a canonical LR(0) s ta te results in
a set with at most one element. The functions for non-
empty q may in this case be rephrased as

[q](i):

if, for some I , I E q A f i n a l (l) t__hen return {(I, i)} else
if B --. .e E ini(q) then ret__.urn [q](B, i)
else if i < n then return [q](xi+~, i + 1)
else return
fi

[q](B,i):

if [9oto(q, B)](i) = ¢ then return ~ else
let (I , j) be the unique element of [goto(q, B)](i). Then:

if pop(I) E q then return {(pop(l), j) }
else return [q](Ihs(l), j)
fl

fi

Reversely, the implementat ions of [q](i) and [q](B,i) of
the previous section can be seen as non-deterministic
versions of the present formulation, which therefore pro-
vides an intuitive picture that may be helpful to under-
s tand the non-deterministic parsing process in an oper-
ational way.

Each function can be replaced by a procedure that ,
instead of returning a function result, assigns the result
to a global (set) variable. As this set variable may con-
tain at most one element, i t can be represented by three
variables, a boolean b, an item R and an integer i. If
a function would have resulted in the set { (I , j) } , the
global variables are set to b = T R U E , R = I and i = j .
A function value ~ is represented by b = F A L S E . Also
the arguments of the functions are superfluous now. The

rble of argument i can be played by the global variable
with the same na__.rne, and l h s (R)can be used instead of
argument B of [q]. Consequently, procedure [¢] becomes
a s ta tement b := F A L S E , whereas for non-emp.~, q one
gets the procedures (keeping the names [q] and [q], trust-
ing no confusion will arise):

[q] :

if, for some I , I E q A f i n a l (l) then R := I
else if B --..¢ E ini(q) then R := B - - e.; [q] __
else if i < n t h e n R := xi+a - - xi+l . ; i := i + 1; [q]
else b := F A L S E
fi

N

M:

[goto(q, Ihs(R))l;
if b. then

if pop(R) E q then R := pop(R)
.else [q]
f i

fi

Note that these procedures do not depend on the details
of the right hand side of R. Only the number of sym-
bols before the dot is relevant for the test "pop(R) E q".
Therefore, R can be replaced by two variables X E V
and an integer I, making the following substi tut ions in
the previous procedures:

R : = A - - * a . =~ X : = A ; I : = I c r l
R : = p o p (R) =~ l := l - 1
pop(R) E q =~ l # l v X = S'
lhs(R) =~ X

After these substi tutions, one gets close to the recursive
ascent recognizer as it was presented in [1]. A recognizer
that is virtually the same as in [l ~ s obtained by replac-
ing the tail-recursive procedure [q] by an i terative loop.
Then one is left with one procedure for each state. While
parsing there is, at each instance, a s tack of activated
procedures tha t corresponds to the stacks that are ex-
plicitly maintained in conventional implementat ions of
determinist ic LR-parsers.

5 C o m p l e x i t y

For LL(0) grammars the recursive descent recognizer is
determinist ic and works in linear time. The same is
true of the ascent recognizer for LR(0) grammars. In
the general, non-deterministic, case the recursive de-
scent and ascent recognizers need exponential t ime un-
less the functions are implemented as memo-functions
[3]. Memo-functions memorize for which arguments they
have been called. If a function is called with the same
arguments as before, the function returns the previous
result without recomputing it. In conventional program-
ming languages memo-functions are not available, but
they can easily be implemented. Devices like graph-
s t ructured stacks [4], parse matrices [7], or welbformed

- 6 5 -

substring tables [8], are in fact low-level realizations of
the abstract notion of memo-functions. The complex-
ity analysis of the recognizers is quite simple. There are
O(n) different invocations of parser functions. The func-
tions call at most O(n) other functions, that all result
in a set with O(n) elements (note that there exist only
O(n) pairs (I, j) with I E IG, i _< j _< n). Merging these
sets to one set with no duplicates can be accomplished in
O(n 2) time on a random access machine. Hence, the to-
tal time-complexity is O(na). The space needed for stor-
ing function results is O(n) per invocation, i.e. O(n 2)
for the whole recognizer.

The above considerations only hold if the parser ter-
minates. The recursive descent parser terminates for all
grammars that are not left-recursive. For the recursive
ascent parser, the situation is more complicated. If the
gra_m.mmar has a cyclic derivation B -** B, the execution
of [q](B, i) leads to a call of itself. Also, there may be a
cycle of transitions labeled by non-terminals that derive
e, e.g. if goto(q, B) = q A B ---, e, so that the execution
of [q](i) leads to a call of itself. There are non-cyclic
grammars that suffer from such a cycle (e.g. S --* SSb,
S --* e). Hence, the ascent parser does not terminate if
the grammar is cyclic or if it leads to a cycle of transi-
tions labeled b_.~ non-terminals that derive e. Otherwise,
execution of [q](B, i) can only lead to calls of [p](i) with
p ~ q and to calls of [q](C,k), such that either k > i
or C--** B A C ~ B. As there are only finitely many
such p, C, the parser terminates. Note that both the re-
cursive descent and ascent recognizer terminate for any
grammar, if the recognizer functions are implemented
as memo-functions with the property that a call of a
function with some arguments yields $ while it is under
execution. For instance, if execution of [q](i) leads to
a call of itself, the second call is to yield ~. A remark
of this kind, for the recursive descent parser, was first
made in ref. [8]. The recursive descent parser then be-
comes virtually equivalent to a version of the standard
Earley algorithm [9] that stores items A ---* a./~ in parse
matrix entry Ti i if/~ ---,* xi+l. . .xi , instead of storing it
if a --*° x ~ + l . . . x j .

The space required for a parser that also calculates
a parse forest, is dominated by this forest. We show
in the next section that it may be compressed into a
cubic amount of space. In the complexity domain our
ascent parser beats its rival, Tomita 's parsing method
[4], which is non-polynomial: for each integer k there
exists a grammar such that the complexity of the Tomita
parser is worse than n k.

In addition to the complexity as a function of sen-
tence length, one may also consider the complexity as
a function of grammar size. It is clear that both time
and space complexity are proportional to the number of
parsing procedures. The number of procedures of the
recursive descent parser is proportional to the number
of items, and hence a linear function of the grammar
size. The recursive ascent parser, however, contains two
functions for each LR-state and is hence proportional to
the size of the canonical collection of LR(0) states. In
the worst case, this size is an exponential function of

grammar size, but in the average natural language case
there seems to be a linear, or even sublinear, dependence
[4] .

6 Parse forest

Usually, the recognition process is followed by the con-
struction of parse trees. For ambiguous grammars, it
becomes an issue how to represent the set of parse trees
as compactly as possible. Below, we describe how to
obtain a cubic representation in cubic time. We do so
in three steps.

In the first step, we observe that ambiguity often
arises locally: given a certain context C[-], there might
be several parse subtrees tl...tk (all deriving the same
substring xi+l...xj from the same symbol A) that fit
in that same context, leading to the parse trees C[tl],
eft2] c[th] for the given string zl . . .zn. Instead of
representing these parse trees separately, repeating each
time the context C, we can represent them collectively
as C[{~1, ..., tk}]. Of course, this idea should be applied
recursively. Technically, this leads to a kind of tree-llke
structure in which each child is a set of substructures
rather than a single one.

The sharing of context can be carried one step further.
If we have, in one and the same context, a number of
applied occurrences of a production rule A ---, a/~ which
share also the same parse forest for a, we can represent
the context of A ---* a~ itself and the common parse
forest for a only once and fit the set of parse forests for
fl into that. Again this idea has to be applied recursively.
Technically, this leads to a binary representation of parse
trees, with each node having at most two sons, and to
the application of the context sharing technique to this
binary representation.

These two ideas are captured by introducing a func-
tion f with the interpretation that f(f3, i , j) represents
the parse forest of all derivations from /~ E V* to
zi+~...x~, for all i , j such that 0 < i < j < n. The
following recursive definitions fix the parse forest repre-
sentation formally:

f(~, i , j) ={[l[i = J},
f (a , i, j) = {alj = i + 1 ^ x,+l = a}, for all a e liT,

f (A , i , j) = {(A,f(ot , i , j)) lA ~ aA
a .---*" xi+l...x~}, for all A E VN,

f (AB/3, i, j) = {(f(A, i, k), f (B # , k, J))l
i < k < j A A ---," xi+l...Xk ^ B/~ --~" xk+l.. .xj}, for
all A, B E V.

The representation for the set of parse trees is then just
f (S , 0, n).

We now come to our third step. Suppose, for the mo-
ment, that the guards a ---,* xi+l...xj and the like, oc-
curring above, can be evaluated in some way or another.
Then we can use function f to compute the representa-
tion of the set of parse trees for sentence xl.. .xn. If we
make use of memo-functions to avoid repeated compu-
tation of a function applied to the same arguments, we
see that there are at most O(n 2) function evaluations.

- 6 6 -

If we represent function values by re]erences to the set
representations rather than by the sets themselves, the
most complicated function evaluation consumes an ad-
ditional amount of storage that is O(n): for j - i + 1
values of k we have to perform the construction of a
pair of (copies of) two references, costing a unit amount
of storage each. Therefore, the total amount of space
needed for the representation of all parse trees is O(n3).

The evaluation of the guards ct ---." xi+l...xj etc.
amounts exactly to solving a collection of recognition
problems. Note that a top-down parser is possible
that merges the recognition and tree-building phases,
by writing

f (A , i , j) = {(A,f(ot , i , j)) lA -., a A f (a , i , j) # ~}, for
all A E VN,

I (AB/ i , i, j) = {(f(A, i, k) , / (B / i , k, J))l
i < k < j A f (A , i , k) # ¢ A f (B / i , k , j) # ~},
for all A, B E V,

the other cases for f being left unchanged. Note the sim-
ilarity between the recognizing part of this algorithm
and the descent recognizer of section 2. Again, this
parser is a cubic algorithm if we use memo-functions.

Another approach is to apply a bottom-up recognizer
first and derive from it a set P containing triples (/i, i , j)
only if/3 ---'" xi+l...xj, and at least those triples (/i, i , j)
for which the guards/3 ---** xi+a ...xj are evaluated dur-
ing the computation of f (S , O, n) (i.e., for each deriva-
tion S ---." xl . . .xkAxj+l. . .Zn "-* Xl...XkOl/iXj+l...Xn "-'**
zl . . .xi f lzj+l. . .xn "~" xl. . .xn, the triples (/ i , i , j) and
(A , k , j) should be in P). The simplest way to obtain
such P from our recognizer is to assume an implementa-
tion of memo-functions that enables access to the mem-
oized function results, after executing [q0](O). Then one
has the disposal of the set

{(/i, i,j)l[q](i) was invocated and
(A --* a./i, j) e [q](i)}

Clearly, (/ i , i , j) is only in this set if /i --+" xi+l...x i.
Note, however, that no pairs (A --~ . / i , j) are included
in [q](i) (except if A = S'). We remedy th__is with a
slight change of the specifications of [q] and [q], defining

~ q U ini(q):

[q](i) =
{(A --.* a.3, j) lA --~ c~./~ E ~ A / i ---** xi+l.. .xj}

[q](B,i) = {(a ---* a. / i , j) lA ---* a./i E "~A
t3 ~ * BT A 7 ""* Xi+l"'Xj}

A recursive implementation of the recognition functions
now is

[q](i) = {(I,Y)l(I , j) e [q](~+~, i + l[}.p
{ (l , j) l B -- . . , e ini(q) A (I , j) E [q](B,i)}U
{(I, i)lI E ~ A final(l)}

[q](B, i) = {(pop(I) , J) l (l , J) E [goto(q, B)] (i) l u
{(I, j) l (J , k} e [goto(q, B)I~}A
pop(J) E ini(q) A (I , j) e [q](lhs(J),k)}

If we define, for this revised recognizer,

P = {(3, i, j)l[q](i) was invocated and
(A - . . . ~ , j) e [q](i)}u
{(A, i, j)l[q](i) was invocated and
(a --, .~, j) e [q](i)}u
{ (x ~ + ~ , i , i + DI0 < i < n} ,

it contains all triples that are needed in f (S , O, n), and
we may write the forest constructing function as

f (A , i , j) = { (a , f (a , i , j)) l A --, a ^ (a , i , j) E P}, for
all A E V~,

f(AB/i, i, j) ---- {(I(A, i, k), f(B/3, k, J))l
(A, i, k) e P A (Bit, k, j) e P}, for all A, B e V,

the other cases for f being left unchanged again. There
exists a representation of P in quadratic space such that
the presence or absence of an arbitrary triple can be de-
cided upon in unit time. As a result, the time complexity
of f (S , O, n) is cubic.

7 E x t e n d e d CF g r a m m a r s

An extended CF grammar consists of grammar rules
with regular expressions at the right hand side. Every
extended CF grammar can be translated into a normal
CF grammar by replacing each right hand side by a
regular (sub)grammar. The strong generative power is
different from CF grammars, however, as the degree of
the nodes in a derivation tree is unbounded. To apply
our recognizer directly to extended grammars, a few of
the foregoing definitiovs have to be revised.

As before, a grammar rule is written A --, a, but with
a now a regular expression with Na symbols (elements
of V). Defining T + = 1...N,, and Ta = 0...Na, regular
expression tr can be characterized by

1. a mapping ¢~ : T~ + ~ V associating a grammar
symbol to each number.

2.. a function succo : To --* 2 T+ mapping each num-
ber to its set of successors. The regular expression
can start with tile symbols corresponding to the
numbers in succo(O).

3. a set a,~ E 2 7̀ 0 of numbers of symbols the regular
expression can end with.

Note that 0 is not associated to a symbol in V and is not
a possible element of succ,,(k). It can be element of a,~
though, in which case there is an empty path through
the regular expression.

We define an item as a pair (A --, a ,k) , with the
interpretation that number k is ' just before the dot'.
The correspondence with dotted rules is the following.
Let a = B1...Bt, then a is a simple regular expression
characterized by ~ba(k) = Bk, succa(k) = {k + 1} if
0 < k < l, succo(l) = {~, and a,, = {I}. Item (A ---. a ,0)
corresponds to the initial item A ---* .a and (A ---* a, k)
to the dotted-rule item with the dot just after Bk.

The predicate final for the new kind of items is defined
by

f ina l ((A ---* a, k)) = (k E an)

Given a set q of items, we define

- 6 7 -

ini(q) = {(A - - a , 0) l (B ---* fl, l) • qA
k • s . c c , (0 ^ ¢a(k) ~ " A~}

The function pop becomes set-valued and the transit ion
function can be defined in terms of it (remember: ~ =
q U ini(q)):

pop((A ~ a , l)) = { (a --. a , k)ll • succ.(k)}

goto(q, B) = { (a ---, a, k) l * . (k) = B a I • ~A
I • pop((a --* a, k))}

A recursive ascent recognizer is now implemented by

[q](i) = [q](~ci+l, i + 1)U
{(I, j) l J e ini(q) ^ f inal (J)A
(I , j) • [q](lhs(J), i)}U
{ (I , i)ll • q ^ f inal([))

[q](B,i) = {J, j) lJ • q ̂ J • pop(I)^
(1, j) • [goto(q, B)] (i) } U
t (I , j) l (J , k) • [goto(q,B)](i) A K • ini(q)^
K • pop(J)^ (l , j) • [q](lhs(J), k)}

The initial s ta te q0 is {(S' ---* S, 0)}, and a sentence
x l . . . x , is grammatical if ((S ' --* S, 0), n) • [qo](O). The
recognizer is determinist ic if

1. there is no shift-reduce or reduce-reduce conflict,
i.e. every state has at most one final item, a n d in
case it has a final i tem it has no i tems (A --, ~ , j)
with k e succ,~(j) A ~b,~(k) • VT.

2. for all reachable states q, q N ini(q) = ~, and for all
I there is at most one J • ~ such that J E pop(I).

In the determinist ic case, the analysis of section 4 can be
repeated with one exception: extended grammar items
can not be represented by a non-terminal and an integer
that equals the number of symbols before thc dot, as this
notion is irrelevant in the case of regular expressions. In
s tandard presentations of determinist ic LR-parsing this
leads to almost unsurmountable problems [5].

8 C o n c l u s i o n s

We established a very simple and elegant implementa-
tion of LR(0) parsing. It is easily extended to LALR(k)
parsing by lett ing the functions [q] produce pairs with
final i tems only after inspection of the next k input sym-
bols.

The functional LR-parser provides a high-level view of
LR-parsing, compared to conventional implementations.
A case in point is the ubiquitous stack, that simply cor-
responds to the procedure stack in the functional case.
As the proof of a functional LR-parser is not hindered
by unnecessary implementation details, it can be very
compact. Nevertheless, the functional implementation
is as efficient as conventional ones. Also, the notion of
memo-functions is an impor tant primitive for present-
ing algorithms at a level of abstract ion that can not
be achieved without them, as is exemplified by this pa-
per 's presentation of both the recognizers and the parse
forests.

For non-LR grammars, there is no reason to use
the complicated Tomita algorithm. If indeed non-
determinist ic LR-parsers beat the Earley algorithm for

some natural language grammars, as claimed in [4], this
is because the number of LR(0) states may be smaller
than the size of IG for such grammars. Evidently, for the
grammars examined in [4] this advantage compensates
the loss of efficiency caused by the non-polynomiality
of Tomita 's algorithm. The present algorithm seems to
have the possible advantage of Tomita 's parser, while
being polynomial.

A c k n o w l e d g e m e n t
A considerable par t of this research was done in collabo-
ration with Lex Augusteyn and Frans Kruseman Aretz.
Both are colleagues at Philips Research.

R e f e r e n c e s

1 F.E.J. Kruseman Aretz, On a recursive ascent parser,
In]ormation Processing Letters (1988) 29:201-206.

2 G.H. Roberts, Recursive Ascent: An LR Analog
to Recursive Descent, SIGPLAN Notices (1988)
23(8):23-29.

3 J. Hughes, Lazy Memo-Functions in Functional Pro-
gramming Languages and Computer Architecture
edited by J.-P. Jouannaud, Springer Lecture Notes
in Computer Science (1985) 201.

4 M. Tomita, Efficient Parsing]or Natural Language
(Kluwer Academic Publishers, 1986).

5 P.W. Purdorn and C.A. Brown, Parsing extended
LR(k) grammars, Acta lnformatica (1981) 15:115-
127.

6 A.V. Aho and J D. Ullman, Principles of Compiler
Design (Addison-Wesley publishing company,1977)

7 A,V. Aho and J.D. Ulhnan, The theory o] parsing,
translation, and compiling (Prentice Hall Inc. En-
glewood Cliffs N.J.,1972).

8 B.A. Shell. Observations on Context Free Parsing in
Statistical Methods in Linguistics (Stockhohn (Swe-
den) 1976) .
Also: Technical Report T R 12-76, Center for Re-
search in Computing Technology, Aiken Computa-
tion Laboratory, Harvard Univ., Cambridge (Mas-
sachusetts).

9 J. Earley, 1970. An Efficient Context-Free Parsing
Algorithm, Communications ACM 13(2):94-102.

- 6 8 -

