An Evaluation of METAL:
the LRC Machine Translation System
Jonathan Slocum
Microelectronics and Computer Technology Corp.

Winfield S. Bennett<br>Lesley Whiffin Edda Norcross<br>Siemens Communication Systems, Inc.

Application Environment


#### Abstract

The Linguistics Research Center (LRC) at the University of Texas at Austin is currently developing METAL, a fully-automatic high quality machine translation system, for market introduction in 1985. This paper will describe the current status of METAL, emphasizing the results of the most recent post-editors' evaluation, and will briefly indicate some future directions for the system. A 6-page German original text and a raw (unedited, but automatically reformatted) METAL translation of that text into English are included as appendices.


## Introduction

The Linguistics Research Center (LRC) at the University of Texas at Austin is currently developing METAL, a fully-automatic high quality machine translation system, for market introduction in 1985. This paper will describe the current status of METAL, including the results of the most recent evaluation, and will briefly indicate some future directions for the system. Exhibits A and B (attached) are, respectively, a German original text and a raw (unedited, but automatically reformatted) METAL translation of that text into English.

## History and Status


#### Abstract

Machine translation research at the University of Texas began in 1956; the LRC was founded in 1961. Eor much of the history of this project, funding was provided by the U.S. Air Eorce's Rome Air Development Center and other U.S. government agencies. In 1979. Siemens AG began funding the development phase of the METAL machine translation system, at which point implementation of the current system was initiated. A prototype has recently been delivered to the sponsor for market testing.


The current systen is a unidirectional German-English system, although work to add other target languages, as well as creating an English-German MT system, is now underway. The present staff for the METAL project consists of seven full-time and five half-time personnel.

Software has been developed to handle the formatting problems associated with technical manuals. This software, written in SNOBOL, automatically marks and prepares texts for the METAL translation system [Slocum and Bennett, 1982: Slocum et al.. 1984]. The only human intervention prior to translation is checking and correcting the results of the automatic formatting routines. Postediting is expected for the output texts. The system does not expect (or provide for) human intervention during the actual translation phase.

Pre-processing and post-editing are presently done on a DEC-2060: the actual translation, on a Symbolics Lisp machine. The "production system" design envisions a Lisp Machine as the translation unit connected to 4-6 translator workstations, from which the prepared texts will be sent to the translation unit and on which the output texts will be postedited.

METAL uses a transfer approach for translation. The entire process consists of four phases: analysis. integration, transfer, and generation (synthesis). The integration phase works with whole parse tree structures, following analysis and preceding transfer. Until recently. transfer and generation were essentially a single phase, but work is currently underway to separate this single phase into two, with a much more powerful generation phase.

## Linguistic Component

The current metal lexicon consists of over 20,000 German and English monolingual entries, consisting of morphological. syntactic, and semantic features and values, and an appropriately large number of transfer entries. The features and values in monolingual lexical entries supply necessary information for the analysis and/or synthesis of these items during the machine translation process. Most entries are reasonably simple, but entries for verb stems are significantly more complex. Inflected adjectives, nouns, and verbs are parsed by word-level grammar rules, with the stems and endings assigned to appropriate lexical categories.

Each transfer lexical entry is a structure equating the source language canonical form with an appropriate target language canonical form. Certain significant information (i.e.. lexical category, subject area, and preference) is coded in the entry to guide the system in selecting the appropriate translation. Furthermore, tests and operations (including transformations) may be included within transfer entries.

The grammar for METAL consists of over 600 augmented phrase structure rules, each of which is used in both analysis and transfer/generation. METAL's grammar rules are used in the parsing of all levels of structure from the word level to the sentence level, including phrases and clauses. A METAL grammar rule consists of five analysis sections, plus an additional section for each target language: a top line describing the phrase structure (with an optional enumeration of each constituent) : a series of restrictions, which test the appropriateness of individual constituents on the right-hand side of the rule; TESTs, which enforce agreement among the right-hand constituents: a CONSTR section, which constructs the analysis of the phrase; an INTEGR section, which is executed (once a complete analysis of the sentence is achieved) in order to, e.g., resolve anaphoric references; and one or more target-language-dependent Transfer sections, which control lexical and structural translation into the target language.

Homograph resolution and disambiguation are handled uniformly (i.e.. without special passes), in various ways: by orthographic tests, such as the test to ensure that a word that looks like a Cerman noun is not all lower case; by positional constraints, which disaliow co-occurrence of ambiguous strings in the same clause location; and. most especially, by the case frame mechanism.

The case (valency) frame mechanism is vital in METAL's analysis of German source language sentences. This mechanism is invoked in clause-level rules and uses features on the verb stem to define the functions of the various central arguments to the predicate. In addition, the case frame mechanism is used to test for such things as subject-verb agreement.

The METAL grammar makes extensive use of transformations to modify structure or perform certain tests. Transformations may be used in the TEST, CONSTR, INTEGR, and Transfer phases of the rules; transformations may also be used in transfer lexical entries. A transformation may be written as part of a rule or called by name.

## Computational Component

The lexicon for METAL is maintained via a DBMS written in LISP. Input of lexical entries is facilitated by an INTERCODER, a menu-driven system which asks the user for information in English and encodes the answers into the internal form used by the system. An integral part of the INTERCODER is the "lexical default" program which accepts minimal information about the particular entry (root form and lexical category) and encodes most of the remaining necessary features and values. Entries may also be created using any text editor, without the aid of the INTERCODER or lexical defaulter.

Interfacing with the lexical database is done by means of a number of menu-driven functions which permit the user to access, edit. copy, and/or delete entries individually, in groups (using specific features), or entirely. In order to assure a high degree of lexicon integrity the METAL system includes validation programs which identify errors in format and/or syntax. The validation process is automatically used to check lexical items which have been edited, to ensure that no errors have been introduced during editing.

The grammar is also in a database and may be accessed and/or edited in much the same way as the lexicon. System software and named transformations are stored in individual source files.

METAL's parser is a "some-paths, parallel, bottom-up parser" [Slocum et al., 1984]. It may be considered to be "some-paths" because the grammar rules are grouped into numerically indexed "levels" and the parser always applies rules at a lower level before applying rules at a higher level. Once the parser has successfully built one or more Ss at a given level. it will halt: until it discovers one or more $S$ readings, the parser will continue to apply rules in each successive level. Extensive experimentation with the system has found that the present parser configuration is the most efficient one for METAL [Slocum et al.. 1984].

## Post-Editors' Evaluation

In June, 1984, the METAL system was used to translate 82.6 pages of text into English; the material varied from a sales prospectus (for a speech recognition system) through various general hardware and software system descriptions to highly technical documentation. The output was then edited by two Siemens revisors (one a member of the METAL project, one not). This section describes the revisors' objective performance and subjective reactions (including comparison with earlier versions of METAL) during this experience.

| Post-Editor | 1st pass | 2nd pass | 3rd pass | Min/Pg | Pgs/ Hr . | Pgs/Day |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#1 | 9 hr 10 min | 3hr 40min | 2hr 10min | 10.9 | 5.5 | 44.1 |
| \#2 | 13hr 40min | 3hr 55min |  | 12.8 | 4.7 | 37.6 |

(N.B. The number of pages of text was computed automatically on the basis of
"Siemens standard pages": 26 lines $\times 55$ characters $=1430$ characters $/ \mathrm{pg}$. )


#### Abstract

The table above sumarizes the editors' revision times. They employed rather different editing techniques (editor \#1 working in three passes, \#2 in just two). but their times are relatively close.

Comments by Editor \#1: [The 3rd Pass] tends to be concerned with stylistic improvements, formatting changes and typing errors. The last part of this stage involves running the spelling checker on the file to eliminate remaining typing errors.


The impression of post-editing was that there have been many improvements over previous test runs. This was evidenced by the fact that on this post-editing run less than $5 \%$ of sentences were re-translated from scratch. The major task in post-editing is now changing word order, changing verb agreement and re-translating the more idiomatic usages. Considerable improvements in format made post-editing easier, although there is still room for further enhancement.

One of the greatest changes affecting post-editing was the fact that since the initial output [compared to earlier versions] of METAL was deemed to have improved, the different stages of post-editing were more clearly defined. That is to say, it was easier to produce an adequate translation during the first run through the text -- using the reformatted output on the screen and a hardcopy of the source text for reference -- than in previous tests. In the second run through a text -- using a hardcopy of the METAL output upon which preliminary post-editing has been performed -- it was easier to concentrate on polishing the translation. In the third and final post-edit stage, one was able to make a final check for stylistic weaknesses, spelling mistakes and typing errors. This was the same method as used in previous tests but one was better able to distinguish between the stages (initial technical and styilstic post-editing; polishing output; final stylistic check) and the entire process was less tiring than in the past.

Although the overall format of the output has improved...there are still [some] problem areas [with the automatic reformatting program].

[^0]and 3rd phases of post-editing continued as normal. The previous problems with post-editing a highly formatted text meant that whenever a textual change was made in the the text then the format had to be re-modified. The method of post-editing used in this test proved to be considerably faster and easier to handle. ... [The results] demonstrate that the time saving lies in the initial post-edit phase which is when the most changes are made and which is most time intensive with regard to re-formatting text.

## Comments by Editor \#2:

As compared to the last run in February 1984, the June 84 output showed considerable improvement. A greater number of sentences was useable and many required a change in word order only. Placement of the determiners has been improved. [Certain] points should be considered to improve future translations.

## Euture Directions

The METAL German-English configuration was released for market testing in January 1985. Current plans are to continue improvement on the present system and to branch off into other target languages, specifically Spanish and Chinese. We estimate that a German-Spanish system should be ready for testing sometime in 1986, with a German-Chinese system sometime thereafter. We have also begun working on an English-German system. If the planned work is successful, work will begin on English-Spanish and English-Chinese MT systems.

## References

Slocum, J., and W. S. Bennett, "The LRC Machine Translation System: An Application of $S$ Eate-of-the-Art Text and Natural Language Processing Techniques to the Translation of Technical Manuals," Working Paper LRC-82-1, Linguistics Research Center, University of Texas, July 1982.

Slocum, J., et al.. "METAL: The LRC Machine Translation System," presented at the ISSCO Tutorial on Machine Translation, Lugano, Switzerland, 2-6 April 1984. Also available as Working Paper LRC-84-2, Linguistics Research Center, University of Texas. April 1984.
Exhibit $A:$
an original German text

## CSE Spracheingabe-Ceraete Einfuehrungsschrift


Die CSE-Geraete iassen sich an Rechner aller bekannten Hersteller anschliessen.
${ }^{\text {a }}$ ) Computer-Sprach-Eingabe 2.1 Technik der Spracherkennung
--.----------
Unter Spracheingabe verstehen wir die Elngabe von Daten per Sprache in
den Computer. Dabel wird das gesprochene Wort durch Spracheingabegeraete,
die dem Computer vorgeschaltet werden, in maschinell verarbeitbare Infordie dem Computer vorgeschaitet werden, In maschineil verarbeitbare Infordieses Muster mit den gespeicherten Mustern des Wortschatzes. Wird eine ausrelchende Ueberelnstimmung mit elnem der Woerter des Wortschatzes festge-
stellit, gilt dieses Wort als erkannt. Im andern Fall weist das Geraet die Eingabe zurueck. Dehr tach einzusprechen ist, eingerichcet. Datenfluss bei der Spracheingabe sieht wie folgt aus: Der typische Datenfluss bei der Spracheingabe sieht wie folgt aus:
Bild 1 Typlscher Datenfluss bel Spracheingabe
Die ueber Mikrofon eingesprochenen Woerter werden nach ihrer Erkennung vom Schnittstelle an den Computer weitergegeben. Dieser fuehrt die anwendungsspezifische Verarbeitung durch. In vielen Faellen ist es dabei nuetzlich,
dem Benutzer mitzuteilen, welche Daten im Anwenderprogram des Computers angekommen sind. Diese Rueckaneldung wird durch eine optische oder andere Anzelge, z.B. des erkannten Wortes, erreicht.
Der Erkennungsvorgang
Technisch koennen beim Vorgang der Spracherkennung zwel Schritte unterDie Vorverarbeltung des akustisch-phonetischen Signals
Die Klassifizierung

Das Spracherkennungsgeraet wandelt das analoge Sprachsignal in digitale
Information um. Dohei wird zunaechst das akustische Signal mit Hilte einer
Eiterbank in einelne Erequenzbereiche zerlegt. Aus diesen Beratchen akustische und phonetische Eigenschaften des Signals. Diese Merkmale werden Sprechgeschwind igkeiten ausgegi ichen werden. bestimnten Wort. Dies stellit den Identifizierungsvorgang im engeren Sinne dar. Das Wort wird durch Vergleich selnes Misters mit den Bitwerten des Bild 2 Tecknischer Ablauf des Spracherkennungsvorganges 2.3 Betr 1 ebsmodi
Die CSE-Geraete der

Die CSE-Geraete der COMPUTER GESELLSCHAET KONSTANZ arbelten in zwel Betriebs
modi: Trainingsmodus
Er dient dem Au

Er dient dem Aufbau und der Aktualisierung des Wortschatzes. Dabei
werden die einzelnen Woerter 5-bzw. 10 mal eingesprochen. Das Sprach-
eingahegeraet bildet aus den gewonnenen Bitmustern einen "Mittelwert", eingabegeraet bildet aus den gewonnenen Bitmustern einen. "Mittelwert", Erkennungsmodus
In diesean Modus
In dieser Modus wird das Geraet zur Dateneingabe benutzt.
3 Eigenschaften der CSE-Gerate
Die CSE-Geraete der COMPULER GESELLSCHAFT KONSTANZ sind sprecheradaptive
E1nzel Einzel vorterkennungssysteme.
Einzelworterkernuing

Einzelworterkennungssysteme erfordern elne erkennbare Pause zwischen zwel gesprochenen Woertern.
Bei den CE-Caraeten muss diese Pause mindestens 100 msec betragen. 3.2 Elgenschaften dos Wortschatzes

Der Wortschatz umfasse je nach Speicherausbau des CSE-Ceraetes bls zu
370 Woerter. Er besteht aus den fuer die jewellige Anwerdung ausgewaehiten 370 Woerter. Er besteht aus den fuer die jewellige Anwendung ausgewaehiten
Begif fen. Jeder Specher, der mit dem Geraet arbeiten will, trainiert in elner Trainingsphase das Geraet auf seine Stimne. Dadurch finden die in-
dividuellen Merkmale seiner Sprache Beruecksichtigung und tragen zu elner groesseren Erkennurgssicherneit bel. ${ }^{\text {Euer }}$ jeden Begrif des Wortschatzes ist zu unterscheiden nach akustisch-phonetischem Signal.
dessen Bedeutung und
dem vereinbarten Code bzw. Zelchenstring,
der an den Anwender-Computer uebergeben wird.
Dia Trernuun nach akust1sch-phonetischem Slgnal und der Bedeutung dieses Signals 1 st eine typische Elgenschaft von sprecheradaptiven Geraeten. Die legt. Dies gilt auch fuer die an den Anwender-Computer zu uebertragenden
Codes bzw. Zeichenstrings. Das akustisch-phonetische Signal jedoch, also das Wort, whe es ausgesprochen wird, ist sprecheradaptiert. Dadurch
splelt es auch keine Roile, ob der Sprecher das Wort mit Dialekt faerbung oder in elner Fremdsprache ausspricht.
Bel sprecheradaptiven Geraeten wird aus den geschilderten Gruenden pro Sprecher ein Wortschatz elingertichtet. Dleser Wertschatz wird In Eormi von
Bitmustern nach dem Training auf elnem Hintergrundspelcher (z.B. Magnerplatte, Magnetbandkassette oder Diskette) abgelegt und bel Inbetriebnahme 3.3 CSE-Ceraete als Tell der Anwenderkonfiguration

Die CSE-Spracheingabegeraete sind selbstaendig arbeitende Prozessoren, die geraeten haben. Fur Anwenderkonelguration erfol Die Verblindung zur Anwenderkonflguration er folgt ueber die genormte
Schnittstelle, die den Anschluss an Computer aller bekannten Hersteller 3.4 Quicktalk-Einrichtung

Um Daten in rascher Foige einzugeben, koennen die CSE-Geraete mit einer
Quicktalk-Zusatzeinr ichturg ausqeruestet werden. Die moegliche Eingabegeschulndigkeit kann dabel bis zu 180 Woertern pro Minute seln.

in recognition mode, the CSE-1050 device reports the word number determined
for the recognized word and/or a control character with meaning/importance " input word not erkannt". These messages must be acknowledged by the host computer
4.2 Voice data entry device CSE 1060
CSE 1060-device consists of
Microphone
Preamplifier
Voice processor
Magnetic tape casetice device
Display device.


Microphone and preamplifier correspond to those CSE of 1050 -device. The voice processor includes the training program outward via the functions. of CSE The magnetic tape casette device is used for the storing of the vocabulary after training and its loading of the magnetic tape cassette into the voice strings are the display device witch is equipped with a keybuord character determined und implements in addition user prompting during training.
the software inter face to the host coaputar, 1050 -device is single with CSE the dotermined character string delivert or the computer volice data entry
devie. The transfer through application program occurs as during an input
e.g. through a data display e.g.
terminal.

5.1 Selection of the words for the vocabulary
The proper/correct selection of the words for the vocabulary prevents the
danger of the substitutions (subsituutions) In recogntion mode. The volce of
a speaker can change dally throuth different influences. However these varlations must be compensated by the voice data entry d divice, without a
further training is necessary. Therefore it is meaningrul/user-friendly
 that they differ clearly in its pronurciation
from-one-another/trom-each-other. could be called "2" as an example the digit. the one "Zwo should have pronoumce, around it to each, if one considers that during recognition procedure, esper information is attributed to the vowels in the words.
value of inflentization of training
speaker-dependent devices require a training through the respective same conditions/requirements, as them in later recognition mode to finde Whil be. applies for working environment as well as tor pecullarities of speech training, every word can be entered repeatedly, wodify around the
pronunciation for example with regard to accentuation to, so that inasmuch as pronurciation for example with regard to accentuation to, so that inasmuch as
possible many variants for the later practical operation are registered. With operation or the device, it can result that the individual words with
regard to rejection or substitution are espectially critical. In these cases. it is not necessary to train ths entire vocabulary again. It suffices in a
training update to input that or the individual critical words宊

[^1]The criteria for proper/correct speaking are the input rate and the clearness
of pronunclation. Different volume and speed during the pronunciation of the of pronurciation. Different volume and speed during the pronunciation of device. the input rate jedoch, under that is speed to understande
during the consecutive input of several words. 15 specified of the speaker It is supported by an optical display wich signals availability to
it. This ald makes possible those from experience for the speaker very
rapldy to reach optimal input
rate.
rate.
during use of the quicktalk feature, several words can be entered in
sequence. without to have to pay attention for the ready signal.
 Sprachprozessor enthaelt ueber die Funktionen des CSE 1050 -Geraetes hinaus Das Magnetbandkassettongeraet dient dem Sichern des Wortschatzes nach dem Training und seinem Laden von der Magnetbandkassette in den Sprachprozessor leber das Sichtgeraet, das m1t einer Tastatur ausgeruester 1 st, werden die Begriffe des Wortschatzes und die zugehoerigen Ausgabezelchenstrings verein Die Programmschnittstelle zum Anwendungs-Computer 1 st beim CSE 1060-Geratet
elnfach und damit sehr benutzer freundich. Nach Erkennen eines Wortes uird der vereinbarte Zeichenstring vom CSE-Geraee uebergeben. Die Uebernahme durch
das Anwendungsprogranme er folgt wie bei elner Eingabe z.B. durch eln Datensichtgeraet.

Die CSE-Ceraete bleten eitne sehr hohe Erkennungsgenaulgkelt und damit eine Bel "kooperativem" Verhalten des Sprechers wird eine Erkennungssicherhelt von mehr als $99 \%$ erreicht. Die folgenden Berutzungsregeln dienen
diesem Ziel: diesem Z1el: richtige Auswahl der Woerter dos Wortschatzes sorgfaeltiges Training
deutliches Sprechen 1 m
Erkennungsbetrieb.

### 5.1 Auswahl dor Woerter fuer den Wortschatz

Die richtige Auswahl dor Woorter fuer den Wortschatz verhindert die Gefahr von Varwechs lungen (Substitutionen) Im Erkennungsbertieb. Die Stimme elines
Sprechers kann sich taegilch durch verschiedene Einfluesse veraendern. Diese Schwankungen muessen jedoch vom Spracheingabegeraet aufgefangen werden. ohne der Auswah1 der Woerter des Wortschatzes. daraut zu achten, dass sie sich
 chend gegen die "Drel" abzugrenzen. Dies wird vor allem darn verstaendifch,
wenn man beruecksichtigt. dass belm Erkennungsvorgang den Vokalen 1 n den Woertern besonders hoher Informationswert beigemessen wird.
5.2 Gestaltung des Trainings

Sprecheradaptive Geraete erfordern oin Training durch den Jewelligen Sprecher fuar dessen spezifischen Wortschatz. Das Training sol it unter denselben

Dies gilt sowohl fuer die Arbeltsumwelt als auch fuer die von der Person hing jedes wort mehr fach eingegeben werden kann, um die Aussprache z.B. fuer den spaeteren praktischen Betrieb er fasst werden Be1 Betrieb des Geraetes kann es sich ergeben, dass einzelne Woerter in Bezug
auf Rueckwelsung oder Substitution besonders krit1sch sind. In diesen Faellen ist es nicht notwendig, den gesamten Wortschatz neu zu trainleren. Es genuegt in einem Nachtraining das oder die einzelnen kritischen Woerter neu ein zugeben.
Sprachverhalten 1 m Erkennungsbetrieb

Die Kriterien fuer das richtige Sprachverhalten sind die Eingabegeschwindigkelt und die Deutilchkelt der Aussprache. Unterschieditiche Lautstaerke und aus. Die Eingabegeschuindigke1t Jedoch, darunter ist das Tempo bei der aufelnander folgenden Eingabe mehrerer Woerter zu verstehen, wird vom Sprecher
bestimme. Er wird durch eine optische Anzeige, die thm die Eingabebereltschaft signalisiert. Unterstuetzt. Er fahrungsgemaess ermoeglicht dieses Hifs
mittel dem Sprecher sehr rasch die optimale Eingabegeschwindigkeit zu er-

Bel Verwendung der Quicktalk-Zusatzelnrichtung koennen mehrere Woerter nachelnander elngegeben werden, ohne auf das Eingabebereitschaftssignal achten
A word pronounced not with sufficient clearness is refused by the computer
voice data entry device. Rejection is indicated optically and where approprlate acoustically so that the user can initiate a further input.
possible applications for the computer voice data entry devices Next to economic aspects, also ergonomic considerations play an important role technical devices becomes important increasingly at the human habits of methods.


 users. The activities with which both hands must ce used whose signt ay/path. The experiences during the previous application of the devices have indicated that there is a large number of

## Quality control Warehouse manage stock-taking <br> Stock-taking Stock control Production da <br> Productaning NC-programing Systen control <br>  controlliar of devices Progranming console for disabled persons Graphic work station Acquisition of cartographic data - Acquisition of cartographic data Chotogrammetrie Acquisition of laboratory data Interpretation of radiography Elight luggage sorting <br> Parcel sorting M11tary management information systems Coumunications

Ein nicht mit ausreichender Deutilchke1t ausgesprochenes Wort wird vom
CSE-Geraet zurueckgewiesen. Die Rueckwe1sung wird optisch und
g9fs. akustisch CSE-Ceraet zurueckgewiesen. Die Rueckwe 1sung $\mathbf{H}$ ird optisch und gifs.
angezeigt, so dass der Benutzer elne erneute Eingabe veranlassen kann Neben oekonomischen Gesichtspunkten splelen bel der Spracherkennung auch ergonomische Ueber legungen elne wichtige Rolle. So gewnint das Angument gewohnheiten in der Diskussion um die Wahl der geeigneten DatenerfassungsDie Spracheingabe bringt viele Vortelle gegenueber den traditionellen Eingabemoeglicrikeiten. Da das gesprochene Wort direkt zur Daten- oder Koumandodung und der neachlassenden Konzentration beseltigt. Dadurch wird die Eehlertaende benutzt werden muessen, der Sichtkontakt zur Datenqueile erhalten ieliben muss oder Arbeiten in schmutziger Umgebung stehen elner Dateneingabe
icht mehr hindernd im Wege. Die Er fahrungen beim bisherigen Einsatz der Ceraete haben gezeligt, dass es eine Vielzahi von Einsatzmoeglichkelten in ver Qual 1 taetskontroll
Inventur au fnahme
Warenein- und -ausgangskontrolle Betrifebsdatener fass
NC-Programmierung Anlagensteuerung
Steuerung von Industrierobotern
Hil fe fuer Behinderte
Hilfe fuer Behinderto
Steuerung von Coraeten - Behinderten-Programmierplatz
Graf1scher Anbelsplatz

- Erfassung kartografischer Daten - Erfassung kartogralischer Daten
- CAD
Photogramnetrie Photogrammetrie
Labordatener fass
Roentgenb 1 daausw Roentgenbildauswertung Fluggepaecksortiorung M111taer 1sche Fuehrungssysteme
Nachrichtentechnlk


[^0]:    As an experiment, the unformatted, interlinear [German-English] version was used for the initial post-editing phase. The text was then reformatted...and the $2 n d$

[^1]:    5.3 Speaking in recognition mode

