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Abstract

The Conference on Computational Natural
Language Learning features a shared task, in
which participants train and test their learn-
ing systems on the same data sets. In 2007,
as in 2006, the shared task has been devoted
to dependency parsing, this year with both a
multilingual track and a domain adaptation
track. In this paper, we define the tasks of the
different tracks and describe how the data
sets were created from existing treebanks for
ten languages. In addition, we characterize
the different approaches of the participating
systems, report the test results, and provide
a first analysis of these results.

1 Introduction

Previous shared tasks of the Conference on Compu-
tational Natural Language Learning (CoNLL) have
been devoted to chunking (1999, 2000), clause iden-
tification (2001), named entity recognition (2002,
2003), and semantic role labeling (2004, 2005). In
2006 the shared task was multilingual dependency
parsing, where participants had to train a single
parser on data from thirteen different languages,
which enabled a comparison not only of parsing and
learning methods, but also of the performance that
can be achieved for different languages (Buchholz
and Marsi, 2006).

In dependency-based syntactic parsing, the task is
to derive a syntactic structure for an input sentence
by identifying the syntactic head of each word in the
sentence. This defines a dependency graph, where

the nodes are the words of the input sentence and the
arcs are the binary relations from head to dependent.
Often, but not always, it is assumed that all words
except one have a syntactic head, which means that
the graph will be a tree with the single independent
word as the root. In labeled dependency parsing, we
additionally require the parser to assign a specific
type (or label) to each dependency relation holding
between a head word and a dependent word.

In this year’s shared task, we continue to explore
data-driven methods for multilingual dependency
parsing, but we add a new dimension by also intro-
ducing the problem of domain adaptation. The way
this was done was by having two separate tracks: a
multilingual track using essentially the same setup
as last year, but with partly different languages, and
a domain adaptation track, where the task was to use
machine learning to adapt a parser for a single lan-
guage to a new domain. In total, test results were
submitted for twenty-three systems in the multilin-
gual track, and ten systems in the domain adaptation
track (six of which also participated in the multilin-
gual track). Not everyone submitted papers describ-
ing their system, and some papers describe more
than one system (or the same system in both tracks),
which explains why there are only (!) twenty-one
papers in the proceedings.

In this paper, we provide task definitions for the
two tracks (section 2), describe data sets extracted
from available treebanks (section 3), report results
for all systems in both tracks (section 4), give an
overview of approaches used (section 5), provide a
first analysis of the results (section 6), and conclude
with some future directions (section 7).
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2 Task Definition

In this section, we provide the task definitions that
were used in the two tracks of the CoNLL 2007
Shard Task, the multilingual track and the domain
adaptation track, together with some background
and motivation for the design choices made. First
of all, we give a brief description of the data format
and evaluation metrics, which were common to the
two tracks.

2.1 Data Format and Evaluation Metrics

The data sets derived from the original treebanks
(section 3) were in the same column-based format
as for the 2006 shared task (Buchholz and Marsi,
2006). In this format, sentences are separated by a
blank line; a sentence consists of one or more to-
kens, each one starting on a new line; and a token
consists of the following ten fields, separated by a
single tab character:

1. ID: Token counter, starting at 1 for each new
sentence.

2. FORM: Word form or punctuation symbol.

3. LEMMA: Lemma or stem of word form, or an
underscore if not available.

4. CPOSTAG: Coarse-grained part-of-speech tag,
where the tagset depends on the language.

5. POSTAG: Fine-grained part-of-speech tag,
where the tagset depends on the language, or
identical to the coarse-grained part-of-speech
tag if not available.

6. FEATS: Unordered set of syntactic and/or mor-
phological features (depending on the particu-
lar language), separated by a vertical bar (|), or
an underscore if not available.

7. HEAD: Head of the current token, which is
either a value of ID or zero (0). Note that,
depending on the original treebank annotation,
there may be multiple tokens with HEAD=0.

8. DEPREL: Dependency relation to the HEAD.
The set of dependency relations depends on
the particular language. Note that, depending

on the original treebank annotation, the depen-
dency relation when HEAD=0 may be mean-
ingful or simply ROOT.

9. PHEAD: Projective head of current token,
which is either a value of ID or zero (0), or an
underscore if not available.

10. PDEPREL: Dependency relation to the
PHEAD, or an underscore if not available.

The PHEAD and PDEPREL were not used at all
in this year’s data sets (i.e., they always contained
underscores) but were maintained for compatibility
with last year’s data sets. This means that, in prac-
tice, the first six columns can be considered as input
to the parser, while the HEAD and DEPREL fields
are the output to be produced by the parser. Labeled
training sets contained all ten columns; blind test
sets only contained the first six columns; and gold
standard test sets (released only after the end of the
test period) again contained all ten columns. All data
files were encoded in UTF-8.

The official evaluation metric in both tracks was
the labeled attachment score (LAS), i.e., the per-
centage of tokens for which a system has predicted
the correct HEAD and DEPREL, but results were
also reported for unlabeled attachment score (UAS),
i.e., the percentage of tokens with correct HEAD,
and the label accuracy (LA), i.e., the percentage of
tokens with correct DEPREL. One important differ-
ence compared to the 2006 shared task is that all to-
kens were counted as “scoring tokens”, including in
particular all punctuation tokens. The official eval-
uation script, eval07.pl, is available from the shared
task website.1

2.2 Multilingual Track
The multilingual track of the shared task was orga-
nized in the same way as the 2006 task, with an-
notated training and test data from a wide range of
languages to be processed with one and the same
parsing system. This system must therefore be able
to learn from training data, to generalize to unseen
test data, and to handle multiple languages, possi-
bly by adjusting a number of hyper-parameters. Par-
ticipants in the multilingual track were expected to
submit parsing results for all languages involved.

1http://depparse.uvt.nl/depparse-wiki/SoftwarePage
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One of the claimed advantages of dependency
parsing, as opposed to parsing based on constituent
analysis, is that it extends naturally to languages
with free or flexible word order. This explains the
interest in recent years for multilingual evaluation
of dependency parsers. Even before the 2006 shared
task, the parsers of Collins (1997) and Charniak
(2000), originally developed for English, had been
adapted for dependency parsing of Czech, and the
parsing methodology proposed by Kudo and Mat-
sumoto (2002) and Yamada and Matsumoto (2003)
had been evaluated on both Japanese and English.
The parser of McDonald and Pereira (2006) had
been applied to English, Czech and Danish, and the
parser of Nivre et al. (2007) to ten different lan-
guages. But by far the largest evaluation of mul-
tilingual dependency parsing systems so far was the
2006 shared task, where nineteen systems were eval-
uated on data from thirteen languages (Buchholz and
Marsi, 2006).

One of the conclusions from the 2006 shared task
was that parsing accuracy differed greatly between
languages and that a deeper analysis of the factors
involved in this variation was an important problem
for future research. In order to provide an extended
empirical foundation for such research, we tried to
select the languages and data sets for this year’s task
based on the following desiderata:

• The selection of languages should be typolog-
ically varied and include both new languages
and old languages (compared to 2006).

• The creation of the data sets should involve as
little conversion as possible from the original
treebank annotation, meaning that preference
should be given to treebanks with dependency
annotation.

• The training data sets should include at least
50,000 tokens and at most 500,000 tokens.2

The final selection included data from Arabic,
Basque, Catalan, Chinese, Czech, English, Greek,
Hungarian, Italian, and Turkish. The treebanks from

2The reason for having an upper bound on the training set
size was the fact that, in 2006, some participants could not train
on all the data for some languages because of time limitations.
Similar considerations also led to the decision to have a smaller
number of languages this year (ten, as opposed to thirteen).

which the data sets were extracted are described in
section 3.

2.3 Domain Adaptation Track
One well known characteristic of data-driven pars-
ing systems is that they typically perform much
worse on data that does not come from the train-
ing domain (Gildea, 2001). Due to the large over-
head in annotating text with deep syntactic parse
trees, the need to adapt parsers from domains with
plentiful resources (e.g., news) to domains with lit-
tle resources is an important problem. This prob-
lem is commonly referred to as domain adaptation,
where the goal is to adapt annotated resources from
a source domain to a target domain of interest.

Almost all prior work on domain adaptation as-
sumes one of two scenarios. In the first scenario,
there are limited annotated resources available in the
target domain, and many studies have shown that
this may lead to substantial improvements. This in-
cludes the work of Roark and Bacchiani (2003), Flo-
rian et al. (2004), Chelba and Acero (2004), Daumé
and Marcu (2006), and Titov and Henderson (2006).
Of these, Roark and Bacchiani (2003) and Titov and
Henderson (2006) deal specifically with syntactic
parsing. The second scenario assumes that there are
no annotated resources in the target domain. This is
a more realistic situation and is considerably more
difficult. Recent work by McClosky et al. (2006)
and Blitzer et al. (2006) have shown that the exis-
tence of a large unlabeled corpus in the new domain
can be leveraged in adaptation. For this shared-task,
we are assuming the latter setting – no annotated re-
sources in the target domain.

Obtaining adequate annotated syntactic resources
for multiple languages is already a challenging prob-
lem, which is only exacerbated when these resources
must be drawn from multiple and diverse domains.
As a result, the only language that could be feasibly
tested in the domain adaptation track was English.

The setup for the domain adaptation track was as
follows. Participants were provided with a large an-
notated corpus from the source domain, in this case
sentences from the Wall Street Journal. Participants
were also provided with data from three different
target domains: biomedical abstracts (development
data), chemical abstracts (test data 1), and parent-
child dialogues (test data 2). Additionally, a large
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unlabeled corpus for each data set (training, devel-
opment, test) was provided. The goal of the task was
to use the annotated source data, plus any unlabeled
data, to produce a parser that is accurate for each of
the test sets from the target domains.3

Participants could submit systems in either the
“open” or “closed” class (or both). The closed class
requires a system to use only those resources pro-
vided as part of the shared task. The open class al-
lows a system to use additional resources provided
those resources are not drawn from the same domain
as the development or test sets. An example might
be a part-of-speech tagger trained on the entire Penn
Treebank and not just the subset provided as train-
ing data, or a parser that has been hand-crafted or
trained on a different training set.

3 Treebanks

In this section, we describe the treebanks used in the
shared task and give relevant information about the
data sets created from them.

3.1 Multilingual Track

Arabic The analytical syntactic annotation
of the Prague Arabic Dependency Treebank
(PADT) (Hajič et al., 2004) can be considered a
pure dependency annotation. The conversion, done
by Otakar Smrz, from the original format to the
column-based format described in section 2.1 was
therefore relatively straightforward, although not all
the information in the original annotation could be
transfered to the new format. PADT was one of the
treebanks used in the 2006 shared task but then only
contained about 54,000 tokens. Since then, the size
of the treebank has more than doubled, with around
112,000 tokens. In addition, the morphological
annotation has been made more informative. It
is also worth noting that the parsing units in this
treebank are in many cases larger than conventional
sentences, which partly explains the high average
number of tokens per “sentence” (Buchholz and
Marsi, 2006).

3Note that annotated development data for the target domain
was only provided for the development domain, biomedical ab-
stracts. For the two test domains, chemical abstracts and parent-
child dialogues, the only annotated data sets were the gold stan-
dard test sets, released only after test runs had been submitted.

Basque For Basque, we used the 3LB Basque
treebank (Aduriz et al., 2003). At present, the tree-
bank consists of approximately 3,700 sentences, 334
of which were used as test data. The treebank com-
prises literary and newspaper texts. It is annotated
in a dependency format and was converted to the
CoNLL format by a team led by Koldo Gojenola.

Catalan The Catalan section of the CESS-ECE
Syntactically and Semantically Annotated Cor-
pora (Martı́ et al., 2007) is annotated with, among
other things, constituent structure and grammatical
functions. A head percolation table was used for
automatically converting the constituent trees into
dependency trees. The original data only contains
functions related to the verb, and a function table
was used for deriving the remaining syntactic func-
tions. The conversion was performed by a team led
by Lluı́s Màrquez and Antònia Martı́.

Chinese The Chinese data are taken from the
Sinica treebank (Chen et al., 2003), which con-
tains both syntactic functions and semantic func-
tions. The syntactic head was used in the conversion
to the CoNLL format, carried out by Yu-Ming Hsieh
and the organizers of the 2006 shared task, and the
syntactic functions were used wherever it was pos-
sible. The training data used is basically the same
as for the 2006 shared task, except for a few correc-
tions, but the test data is new for this year’s shared
task. It is worth noting that the parsing units in this
treebank are sometimes smaller than conventional
sentence units, which partly explains the low aver-
age number of tokens per “sentence” (Buchholz and
Marsi, 2006).

Czech The analytical syntactic annotation of the
Prague Dependency Treebank (PDT) (Böhmová et
al., 2003) is a pure dependency annotation, just as
for PADT. It was also used in the shared task 2006,
but there are two important changes compared to
last year. First, version 2.0 of PDT was used in-
stead of version 1.0, and a conversion script was
created by Zdenek Zabokrtsky, using the new XML-
based format of PDT 2.0. Secondly, due to the upper
bound on training set size, only sections 1–3 of PDT
constitute the training data, which amounts to some
450,000 tokens. The test data is a small subset of the
development test set of PDT.
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English For English we used the Wall Street Jour-
nal section of the Penn Treebank (Marcus et al.,
1993). In particular, we used sections 2-11 for train-
ing and a subset of section 23 for testing. As a pre-
processing stage we removed many functions tags
from the non-terminals in the phrase structure repre-
sentation to make the representations more uniform
with out-of-domain test sets for the domain adapta-
tion track (see section 3.2). The resulting data set
was then converted to dependency structures using
the procedure described in Johansson and Nugues
(2007a). This work was done by Ryan McDonald.

Greek The Greek Dependency Treebank
(GDT) (Prokopidis et al., 2005) adopts a de-
pendency structure annotation very similar to those
of PDT and PADT, which means that the conversion
by Prokopis Prokopidis was relatively straightfor-
ward. GDT is one of the smallest treebanks in
this year’s shared task (about 65,000 tokens) and
contains sentences of Modern Greek. Just like PDT
and PADT, the treebank contains more than one
level of annotation, but we only used the analytical
level of GDT.

Hungarian For the Hungarian data, the Szeged
treebank (Csendes et al., 2005) was used. The tree-
bank is based on texts from six different genres,
ranging from legal newspaper texts to fiction. The
original annotation scheme is constituent-based, fol-
lowing generative principles. It was converted into
dependencies by Zóltan Alexin based on heuristics.

Italian The data set used for Italian is a subset
of the balanced section of the Italian Syntactic-
Semantic Treebank (ISST) (Montemagni et al.,
2003) and consists of texts from the newspaper Cor-
riere della Sera and from periodicals. A team led
by Giuseppe Attardi, Simonetta Montemagni, and
Maria Simi converted the annotation to the CoNLL
format, using information from two different anno-
tation levels, the constituent structure level and the
dependency structure level.

Turkish For Turkish we used the METU-Sabancı
Turkish Treebank (Oflazer et al., 2003), which was
also used in the 2006 shared task. A new test set of
about 9,000 tokens was provided by Gülşen Eryiğit
(Eryiğit, 2007), who also handled the conversion to
the CoNLL format, which means that we could use

all the approximately 65,000 tokens of the original
treebank for training. The rich morphology of Turk-
ish requires the basic tokens in parsing to be inflec-
tional groups (IGs) rather than words. IGs of a single
word are connected to each other deterministically
using dependency links labeled DERIV, referred to
as word-internal dependencies in the following, and
the FORM and the LEMMA fields may be empty
(they contain underscore characters in the data files).
Sentences do not necessarily have a unique root;
most internal punctuation and a few foreign words
also have HEAD=0.

3.2 Domain Adaptation Track

As mentioned previously, the source data is drawn
from a corpus of news, specifically the Wall Street
Journal section of the Penn Treebank (Marcus et al.,
1993). This data set is identical to the English train-
ing set from the multilingual track (see section 3.1).

For the target domains we used three different
labeled data sets. The first two were annotated
as part of the PennBioIE project (Kulick et al.,
2004) and consist of sentences drawn from either
biomedical or chemical research abstracts. Like the
source WSJ corpus, this data is annotated using the
Penn Treebank phrase structure scheme. To con-
vert these sets to dependency structures we used the
same procedure as before (Johansson and Nugues,
2007a). Additional care was taken to remove sen-
tences that contained non-WSJ part-of-speech tags
or non-terminals (e.g., HYPH part-of-speech tag in-
dicating a hyphen). Furthermore, the annotation
scheme for gaps and traces was made consistent with
the Penn Treebank wherever possible. As already
mentioned, the biomedical data set was distributed
as a development set for the training phase, while
the chemical data set was only used for final testing.

The third target data set was taken from the
CHILDES database (MacWhinney, 2000), in partic-
ular the EVE corpus (Brown, 1973), which has been
annotated with dependency structures. Unfortu-
nately the dependency labels of the CHILDES data
were inconsistent with those of the WSJ, biomedi-
cal and chemical data sets, and we therefore opted
to only evaluate unlabeled accuracy for this data
set. Furthermore, there was an inconsistency in how
main and auxiliary verbs were annotated for this data
set relative to others. As a result of this, submitting
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Multilingual Domain adaptation
Ar Ba Ca Ch Cz En Gr Hu It Tu PCHEM CHILDES

Language family Sem. Isol. Rom. Sin. Sla. Ger. Hel. F.-U. Rom. Tur. Ger.
Annotation d d c+f c+f d c+f d c+f c+f d c+f d

Training data Development data
Tokens (k) 112 51 431 337 432 447 65 132 71 65 5
Sentences (k) 2.9 3.2 15.0 57.0 25.4 18.6 2.7 6.0 3.1 5.6 0.2
Tokens/sentence 38.3 15.8 28.8 5.9 17.0 24.0 24.2 21.8 22.9 11.6 25.1
LEMMA Yes Yes Yes No Yes No Yes Yes Yes Yes No
No. CPOSTAG 15 25 17 13 12 31 18 16 14 14 25
No. POSTAG 21 64 54 294 59 45 38 43 28 31 37
No. FEATS 21 359 33 0 71 0 31 50 21 78 0
No. DEPREL 29 35 42 69 46 20 46 49 22 25 18
No. DEPREL H=0 18 17 1 1 8 1 22 1 1 1 1
% HEAD=0 8.7 9.7 3.5 16.9 11.6 4.2 8.3 4.6 5.4 12.8 4.0
% HEAD left 79.2 44.5 60.0 24.7 46.9 49.0 44.8 27.4 65.0 3.8 50.0
% HEAD right 12.1 45.8 36.5 58.4 41.5 46.9 46.9 68.0 29.6 83.4 46.0
HEAD=0/sentence 3.3 1.5 1.0 1.0 2.0 1.0 2.0 1.0 1.2 1.5 1.0
% Non-proj. arcs 0.4 2.9 0.1 0.0 1.9 0.3 1.1 2.9 0.5 5.5 0.4
% Non-proj. sent. 10.1 26.2 2.9 0.0 23.2 6.7 20.3 26.4 7.4 33.3 8.0
Punc. attached S S A S S A S A A S A
DEPRELS for punc. 10 13 6 29 16 13 15 1 10 12 8

Test data PCHEM CHILDES
Tokens 5124 5390 5016 5161 4724 5003 4804 7344 5096 4513 5001 4999
Sentences 131 334 167 690 286 214 197 390 249 300 195 666
Tokens/sentence 39.1 16.1 30.0 7.5 16.5 23.4 24.4 18.8 20.5 15.0 25.6 12.9
% New words 12.44 24.98 4.35 9.70 12.58 3.13 12.43 26.10 15.07 36.29 31.33 6.10
% New lemmas 2.82 11.13 3.36 n/a 5.28 n/a 5.82 14.80 8.24 9.95 n/a n/a

Table 1: Characteristics of the data sets for the 10 languages of the multilingual track and the development
set and the two test sets of the domain adaptation track.
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results for the CHILDES data was considered op-
tional. Like the chemical data set, this data set was
only used for final testing.

Finally, a large corpus of unlabeled in-domain
data was provided for each data set and made avail-
able for training. This data was drawn from the WSJ,
PubMed.com (specific to biomedical and chemical
research literature), and the CHILDES data base.
The data was tokenized to be as consistent as pos-
sible with the WSJ training set.

3.3 Overview

Table 1 describes the characteristics of the data sets.
For the multilingual track, we provide statistics over
the training and test sets; for the domain adaptation
track, the statistics were extracted from the develop-
ment set. Following last year’s shared task practice
(Buchholz and Marsi, 2006), we use the following
definition of projectivity: An arc (i, j) is projective
iff all nodes occurring between i and j are dominated
by i (where dominates is the transitive closure of the
arc relation).

In the table, the languages are abbreviated to their
first two letters. Language families are: Semitic,
Isolate, Romance, Sino-Tibetan, Slavic, Germanic,
Hellenic, Finno-Ugric, and Turkic. The type of the
original annotation is either constituents plus (some)
functions (c+f) or dependencies (d). For the train-
ing data, the number of words and sentences are
given in multiples of thousands, and the average
length of a sentence in words (including punctua-
tion tokens). The following rows contain informa-
tion about whether lemmas are available, the num-
ber of coarse- and fine-grained part-of-speech tags,
the number of feature components, and the number
of dependency labels. Then information is given on
how many different dependency labels can co-occur
with HEAD=0, the percentage of HEAD=0 depen-
dencies, and the percentage of heads preceding (left)
or succeeding (right) a token (giving an indication of
whether a language is predominantly head-initial or
head-final). This is followed by the average number
of HEAD=0 dependencies per sentence and the per-
centage of non-projective arcs and sentences. The
last two rows show whether punctuation tokens are
attached as dependents of other tokens (A=Always,
S=Sometimes) and specify the number of depen-
dency labels that exist for punctuation tokens. Note

that punctuation is defined as any token belonging to
the UTF-8 category of punctuation. This means, for
example, that any token having an underscore in the
FORM field (which happens for word-internal IGs
in Turkish) is also counted as punctuation here.

For the test sets, the number of words and sen-
tences as well as the ratio of words per sentence are
listed, followed by the percentage of new words and
lemmas (if applicable). For the domain adaptation
sets, the percentage of new words is computed with
regard to the training set (Penn Treebank).

4 Submissions and Results

As already stated in the introduction, test runs were
submitted for twenty-three systems in the multilin-
gual track, and ten systems in the domain adaptation
track (six of which also participated in the multilin-
gual track). In the result tables below, systems are
identified by the last name of the team member listed
first when test runs were uploaded for evaluation. In
general, this name is also the first author of a paper
describing the system in the proceedings, but there
are a few exceptions and complications. First of all,
for four out of twenty-seven systems, no paper was
submitted to the proceedings. This is the case for the
systems of Jia, Maes et al., Nash, and Zeman, which
is indicated by the fact that these names appear in
italics in all result tables. Secondly, two teams sub-
mitted two systems each, which are described in a
single paper by each team. Thus, the systems called
“Nilsson” and “Hall, J.” are both described in Hall et
al. (2007a), while the systems called “Duan (1)” and
“Duan (2)” are both described in Duan et al. (2007).
Finally, please pay attention to the fact that there
are two teams, where the first author’s last name is
Hall. Therefore, we use “Hall, J.” and “Hall, K.”,
to disambiguate between the teams involving Johan
Hall (Hall et al., 2007a) and Keith Hall (Hall et al.,
2007b), respectively.

Tables 2 and 3 give the scores for the multilingual
track in the CoNLL 2007 shared task. The Average
column contains the average score for all ten lan-
guages, which determines the ranking in this track.
Table 4 presents the results for the domain adapta-
tion track, where the ranking is determined based on
the PCHEM results only, since the CHILDES data
set was optional. Note also that there are no labeled
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Team Average Arabic Basque Catalan Chinese Czech English Greek Hungarian Italian Turkish
Nilsson 80.32(1) 76.52(1) 76.94(1) 88.70(1) 75.82(15) 77.98(3) 88.11(5) 74.65(2) 80.27(1) 84.40(1) 79.79(2)
Nakagawa 80.29(2) 75.08(2) 72.56(7) 87.90(3) 83.84(2) 80.19(1) 88.41(3) 76.31(1) 76.74(8) 83.61(3) 78.22(5)
Titov 79.90(3) 74.12(6) 75.49(3) 87.40(6) 82.14(7) 77.94(4) 88.39(4) 73.52(10) 77.94(4) 82.26(6) 79.81(1)
Sagae 79.90(4) 74.71(4) 74.64(6) 88.16(2) 84.69(1) 74.83(8) 89.01(2) 73.58(8) 79.53(2) 83.91(2) 75.91(10)
Hall, J. 79.80(5)* 74.75(3) 74.99(5) 87.74(4) 83.51(3) 77.22(6) 85.81(12) 74.21(6) 78.09(3) 82.48(5) 79.24(3)
Carreras 79.09(6)* 70.20(11) 75.75(2) 87.60(5) 80.86(10) 78.60(2) 89.61(1) 73.56(9) 75.42(9) 83.46(4) 75.85(11)
Attardi 78.27(7) 72.66(8) 69.48(12) 86.86(7) 81.50(8) 77.37(5) 85.85(10) 73.92(7) 76.81(7) 81.34(8) 76.87(7)
Chen 78.06(8) 74.65(5) 72.39(8) 86.66(8) 81.24(9) 73.69(10) 83.81(13) 74.42(3) 75.34(10) 82.04(7) 76.31(9)
Duan (1) 77.70(9)* 69.91(13) 71.26(9) 84.95(10) 82.58(6) 75.34(7) 85.83(11) 74.29(4) 77.06(5) 80.75(9) 75.03(12)
Hall, K. 76.91(10)* 73.40(7) 69.81(11) 82.38(14) 82.77(4) 72.27(12) 81.93(15) 74.21(5) 74.20(11) 80.69(10) 77.42(6)
Schiehlen 76.18(11) 70.08(12) 66.77(14) 85.75(9) 80.04(11) 73.86(9) 86.21(9) 72.29(12) 73.90(12) 80.46(11) 72.48(15)
Johansson 75.78(12)* 71.76(9) 75.08(4) 83.33(12) 76.30(14) 70.98(13) 80.29(17) 72.77(11) 71.31(13) 77.55(14) 78.46(4)
Mannem 74.54(13)* 71.55(10) 65.64(15) 84.47(11) 73.76(17) 70.68(14) 81.55(16) 71.69(13) 70.94(14) 78.67(13) 76.42(8)
Wu 73.02(14)* 66.16(14) 70.71(10) 81.44(15) 74.69(16) 66.72(16) 79.49(18) 70.63(14) 69.08(15) 78.79(12) 72.52(14)
Nguyen 72.53(15)* 63.58(16) 58.18(17) 83.23(13) 79.77(12) 72.54(11) 86.73(6) 70.42(15) 68.12(17) 75.06(16) 67.63(17)
Maes 70.66(16)* 65.12(15) 69.05(13) 79.21(16) 70.97(18) 67.38(15) 69.68(21) 68.59(16) 68.93(16) 73.63(18) 74.03(13)
Canisius 66.99(17)* 59.13(18) 63.17(16) 75.44(17) 70.45(19) 56.14(17) 77.27(19) 60.35(18) 64.31(19) 75.57(15) 68.09(16)
Jia 63.00(18)* 63.37(17) 57.61(18) 23.35(20) 76.36(13) 54.95(18) 82.93(14) 65.45(17) 66.61(18) 74.65(17) 64.68(18)
Zeman 54.87(19) 46.06(20) 50.61(20) 62.94(19) 54.49(20) 50.21(20) 53.59(22) 55.29(19) 55.24(20) 62.13(19) 58.10(19)
Marinov 54.55(20)* 54.00(19) 51.24(19) 69.42(18) 49.87(21) 53.47(19) 52.11(23) 54.33(20) 44.47(21) 59.75(20) 56.88(20)
Duan (2) 24.62(21)* 82.64(5) 86.69(7) 76.89(6)
Nash 8.65(22)* 86.49(8)
Shimizu 7.20(23) 72.02(20)

Table 2: Labeled attachment score (LAS) for the multilingual track in the CoNLL 2007 shared task. Teams
are denoted by the last name of their first member, with italics indicating that there is no corresponding
paper in the proceedings. The number in parentheses next to each score gives the rank. A star next to a score
in the Average column indicates a statistically significant difference with the next lower rank.

Team Average Arabic Basque Catalan Chinese Czech English Greek Hungarian Italian Turkish
Nakagawa 86.55(1)* 86.09(1) 81.04(5) 92.86(4) 88.88(2) 86.28(1) 90.13(2) 84.08(1) 82.49(3) 87.91(1) 85.77(3)
Nilsson 85.71(2) 85.81(2) 82.84(1) 93.12(3) 84.52(12) 83.59(4) 88.93(5) 81.22(4) 83.55(1) 87.77(2) 85.77(2)
Titov 85.62(3) 83.18(7) 81.93(2) 93.40(1) 87.91(4) 84.19(3) 89.73(4) 81.20(5) 82.18(4) 86.26(6) 86.22(1)
Sagae 85.29(4)* 84.04(4) 81.19(3) 93.34(2) 88.94(1) 81.27(8) 89.87(3) 80.37(11) 83.51(2) 87.68(3) 82.72(9)
Carreras 84.79(5) 81.48(10) 81.11(4) 92.46(5) 86.20(9) 85.16(2) 90.63(1) 81.37(3) 79.92(9) 87.19(4) 82.41(10)
Hall, J. 84.74(6)* 84.21(3) 80.61(6) 92.20(6) 87.60(5) 82.35(6) 86.77(12) 80.66(9) 81.71(6) 86.26(5) 85.04(5)
Attardi 83.96(7)* 82.53(8) 76.88(11) 91.41(7) 86.73(8) 83.40(5) 86.99(10) 80.75(8) 81.81(5) 85.54(8) 83.56(7)
Chen 83.22(8) 83.49(5) 78.65(8) 90.87(8) 85.91(10) 80.14(11) 84.91(13) 81.16(6) 79.25(11) 85.91(7) 81.92(12)
Hall, K. 83.08(9) 83.45(6) 78.55(9) 87.80(15) 87.91(3) 78.47(12) 83.21(15) 82.04(2) 79.34(10) 84.81(9) 85.18(4)
Duan (1) 82.77(10) 79.04(13) 77.59(10) 89.71(12) 86.88(7) 80.82(10) 86.97(11) 80.77(7) 80.66(7) 84.20(11) 81.03(13)
Schiehlen 82.42(11)* 81.07(11) 73.30(14) 90.79(10) 85.45(11) 81.73(7) 88.91(6) 80.47(10) 78.61(12) 84.54(10) 79.33(15)
Johansson 81.13(12)* 80.91(12) 80.43(7) 88.34(13) 81.30(15) 77.39(13) 81.43(18) 79.58(12) 75.53(15) 81.55(15) 84.80(6)
Mannem 80.30(13) 81.56(9) 72.88(15) 89.81(11) 78.84(17) 77.20(14) 82.81(16) 78.89(13) 75.39(16) 82.91(12) 82.74(8)
Nguyen 80.00(14)* 73.46(18) 69.15(18) 88.12(14) 84.05(13) 80.91(9) 88.01(7) 77.56(15) 78.13(13) 80.40(16) 80.19(14)
Jia 78.46(15) 74.20(17) 70.24(16) 90.83(9) 83.39(14) 70.41(18) 84.37(14) 75.65(16) 77.19(14) 82.36(14) 75.96(17)
Wu 78.44(16)* 77.05(14) 75.77(12) 85.85(16) 79.71(16) 73.07(16) 81.69(17) 78.12(14) 72.39(18) 82.57(13) 78.15(16)
Maes 76.60(17)* 75.47(16) 75.27(13) 84.35(17) 76.57(18) 74.03(15) 71.62(21) 75.19(17) 72.93(17) 78.32(18) 82.21(11)
Canisius 74.83(18)* 76.89(15) 70.17(17) 81.64(18) 74.81(19) 72.12(17) 78.23(19) 72.46(18) 67.80(19) 79.08(17) 75.14(18)
Zeman 62.02(19)* 58.55(20) 57.42(20) 68.50(20) 62.93(20) 59.19(20) 58.33(22) 62.89(19) 59.78(20) 68.27(19) 64.30(19)
Marinov 60.83(20)* 64.27(19) 58.55(19) 74.22(19) 56.09(21) 59.57(19) 54.33(23) 61.18(20) 50.39(21) 65.52(20) 64.13(20)
Duan (2) 25.53(21)* 86.94(6) 87.87(8) 80.53(8)
Nash 8.77(22)* 87.71(9)
Shimizu 7.79(23) 77.91(20)

Table 3: Unlabeled attachment scores (UAS) for the multilingual track in the CoNLL 2007 shared task.
Teams are denoted by the last name of their first member, with italics indicating that there is no correspond-
ing paper in the proceedings. The number in parentheses next to each score gives the rank. A star next to a
score in the Average column indicates a statistically significant difference with the next lower rank.
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LAS UAS
Team PCHEM-c PCHEM-o PCHEM-c PCHEM-o CHILDES-c CHILDES-o
Sagae 81.06(1) 83.42(1)
Attardi 80.40(2) 83.08(3) 58.67(3)
Dredze 80.22(3) 83.38(2) 61.37(1)
Nguyen 79.50(4)* 82.04(4)*
Jia 76.48(5)* 78.92(5)* 57.43(5)
Bick 71.81(6)* 78.48(1)* 74.71(6)* 81.62(1)* 58.07(4) 62.49(1)
Shimizu 64.15(7)* 63.49(2) 71.25(7)* 70.01(2)*
Zeman 50.61(8) 54.57(8) 58.89(2)
Schneider 63.01(3)* 66.53(3)* 60.27(2)
Watson 55.47(4) 62.79(4) 45.61(3)
Wu 52.89(6)

Table 4: Labeled (LAS) and unlabeled (UAS) attachment scores for the closed (-c) and open (-o) classes of
the domain adaptation track in the CoNLL 2007 shared task. Teams are denoted by the last name of their
first member, with italics indicating that there is no corresponding paper in the proceedings. The number
in parentheses next to each score gives the rank. A star next to a score in the PCHEM columns indicates a
statistically significant difference with the next lower rank.

attachment scores for the CHILDES data set, for rea-
sons explained in section 3.2. The number in paren-
theses next to each score gives the rank. A star next
to a score indicates that the difference with the next
lower rank is significant at the 5% level using a z-
test for proportions. A more complete presentation
of the results, including the significance results for
all the tasks and their p-values, can be found on the
shared task website.4

Looking first at the results in the multilingual
track, we note that there are a number of systems
performing at almost the same level at the top of the
ranking. For the average labeled attachment score,
the difference between the top score (Nilsson) and
the fifth score (Hall, J.) is no more than half a per-
centage point, and there are generally very few sig-
nificant differences among the five or six best sys-
tems, regardless of whether we consider labeled or
unlabeled attachment score. For the closed class of
the domain adaptation track, we see a very similar
pattern, with the top system (Sagae) being followed
very closely by two other systems. For the open
class, the results are more spread out, but then there
are very few results in this class. It is also worth not-
ing that the top scores in the closed class, somewhat
unexpectedly, are higher than the top scores in the

4http://nextens.uvt.nl/depparse-wiki/AllScores

open class. But before we proceed to a more detailed
analysis of the results (section 6), we will make an
attempt to characterize the approaches represented
by the different systems.

5 Approaches

In this section we give an overview of the models,
inference methods, and learning methods used in the
participating systems. For obvious reasons the dis-
cussion is limited to systems that are described by
a paper in the proceedings. But instead of describ-
ing the systems one by one, we focus on the basic
methodological building blocks that are often found
in several systems although in different combina-
tions. For descriptions of the individual systems, we
refer to the respective papers in the proceedings.

Section 5.1 is devoted to system architectures. We
then describe the two main paradigms for learning
and inference, in this year’s shared task as well as in
last year’s, which we call transition-based parsers
(section 5.2) and graph-based parsers (section 5.3),
adopting the terminology of McDonald and Nivre
(2007).5 Finally, we give an overview of the domain
adaptation methods that were used (section 5.4).

5This distinction roughly corresponds to the distinction
made by Buchholz and Marsi (2006) between ”stepwise” and
“all-pairs” approaches.
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5.1 Architectures

Most systems perform some amount of pre- and
post-processing, making the actual parsing compo-
nent part of a sequential workflow of varying length
and complexity. For example, most transition-
based parsers can only build projective dependency
graphs. For languages with non-projective depen-
dencies, graphs therefore need to be projectivized
for training and deprojectivized for testing (Hall et
al., 2007a; Johansson and Nugues, 2007b; Titov and
Henderson, 2007).

Instead of assigning HEAD and DEPREL in a
single step, some systems use a two-stage approach
for attaching and labeling dependencies (Chen et al.,
2007; Dredze et al., 2007). In the first step unlabeled
dependencies are generated, in the second step these
are labeled. This is particularly helpful for factored
parsing models, in which label decisions cannot be
easily conditioned on larger parts of the structure
due to the increased complexity of inference. One
system (Hall et al., 2007b) extends this two-stage ap-
proach to a three-stage architecture where the parser
and labeler generate an n-best list of parses which in
turn is reranked.6

In ensemble-based systems several base parsers
provide parsing decisions, which are added together
for a combined score for each potential dependency
arc. The tree that maximizes the sum of these com-
bined scores is taken as the final output parse. This
technique is used by Sagae and Tsujii (2007) and in
the Nilsson system (Hall et al., 2007a). It is worth
noting that both these systems combine transition-
based base parsers with a graph-based method for
parser combination, as first described by Sagae and
Lavie (2006).

Data-driven grammar-based parsers, such as Bick
(2007), Schneider et al. (2007), and Watson and
Briscoe (2007), need pre- and post-processing in or-
der to map the dependency graphs provided as train-
ing data to a format compatible with the grammar
used, and vice versa.

5.2 Transition-Based Parsers

Transition-based parsers build dependency graphs
by performing sequences of actions, or transitions.
Both learning and inference is conceptualized in

6They also flip the order of the labeler and the reranker.

terms of predicting the correct transition based on
the current parser state and/or history. We can fur-
ther subclassify parsers with respect to the model (or
transition system) they adopt, the inference method
they use, and the learning method they employ.

5.2.1 Models
The most common model for transition-based
parsers is one inspired by shift-reduce parsing,
where a parser state contains a stack of partially
processed tokens and a queue of remaining input
tokens, and where transitions add dependency arcs
and perform stack and queue operations. This type
of model is used by the majority of transition-based
parsers (Attardi et al., 2007; Duan et al., 2007; Hall
et al., 2007a; Johansson and Nugues, 2007b; Man-
nem, 2007; Titov and Henderson, 2007; Wu et al.,
2007). Sometimes it is combined with an explicit
probability model for transition sequences, which
may be conditional (Duan et al., 2007) or generative
(Titov and Henderson, 2007).

An alternative model is based on the list-based
parsing algorithm described by Covington (2001),
which iterates over the input tokens in a sequen-
tial manner and evaluates for each preceding token
whether it can be linked to the current token or not.
This model is used by Marinov (2007) and in com-
ponent parsers of the Nilsson ensemble system (Hall
et al., 2007a). Finally, two systems use models based
on LR parsing (Sagae and Tsujii, 2007; Watson and
Briscoe, 2007).

5.2.2 Inference
The most common inference technique in transition-
based dependency parsing is greedy deterministic
search, guided by a classifier for predicting the next
transition given the current parser state and history,
processing the tokens of the sentence in sequen-
tial left-to-right order7 (Hall et al., 2007a; Mannem,
2007; Marinov, 2007; Wu et al., 2007). Optionally
multiple passes over the input are conducted until no
tokens are left unattached (Attardi et al., 2007).

As an alternative to deterministic parsing, several
parsers use probabilistic models and maintain a heap
or beam of partial transition sequences in order to
pick the most probable one at the end of the sentence

7For diversity in parser ensembles, right-to-left parsers are
also used.
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(Duan et al., 2007; Johansson and Nugues, 2007b;
Sagae and Tsujii, 2007; Titov and Henderson, 2007).

One system uses as part of their parsing pipeline a
“neighbor-parser” that attaches adjacent words and
a “root-parser” that identifies the root word(s) of a
sentence (Wu et al., 2007). In the case of grammar-
based parsers, a classifier is used to disambiguate
in cases where the grammar leaves some ambiguity
(Schneider et al., 2007; Watson and Briscoe, 2007)

5.2.3 Learning
Transition-based parsers either maintain a classifier
that predicts the next transition or a global proba-
bilistic model that scores a complete parse. To train
these classifiers and probabilitistic models several
approaches were used: SVMs (Duan et al., 2007;
Hall et al., 2007a; Sagae and Tsujii, 2007), modified
finite Newton SVMs (Wu et al., 2007), maximum
entropy models (Sagae and Tsujii, 2007), multiclass
averaged perceptron (Attardi et al., 2007) and max-
imum likelihood estimation (Watson and Briscoe,
2007).

In order to calculate a global score or probabil-
ity for a transition sequence, two systems used a
Markov chain approach (Duan et al., 2007; Sagae
and Tsujii, 2007). Here probabilities from the output
of a classifier are multiplied over the whole sequence
of actions. This results in a locally normalized
model. Two other entries used MIRA (Mannem,
2007) or online passive-aggressive learning (Johans-
son and Nugues, 2007b) to train a globally normal-
ized model. Titov and Henderson (2007) used an in-
cremental sigmoid Bayesian network to model the
probability of a transition sequence and estimated
model parameters using neural network learning.

5.3 Graph-Based Parsers

While transition-based parsers use training data to
learn a process for deriving dependency graphs,
graph-based parsers learn a model of what it means
to be a good dependency graph given an input sen-
tence. They define a scoring or probability function
over the set of possible parses. At learning time
they estimate parameters of this function; at pars-
ing time they search for the graph that maximizes
this function. These parsers mainly differ in the
type and structure of the scoring function (model),
the search algorithm that finds the best parse (infer-

ence), and the method to estimate the function’s pa-
rameters (learning).

5.3.1 Models
The simplest type of model is based on a sum of
local attachment scores, which themselves are cal-
culated based on the dot product of a weight vector
and a feature representation of the attachment. This
type of scoring function is often referred to as a first-
order model.8 Several systems participating in this
year’s shared task used first-order models (Schiehlen
and Spranger, 2007; Nguyen et al., 2007; Shimizu
and Nakagawa, 2007; Hall et al., 2007b). Canisius
and Tjong Kim Sang (2007) cast the same type of
arc-based factorization as a weighted constraint sat-
isfaction problem.

Carreras (2007) extends the first-order model to
incorporate a sum over scores for pairs of adjacent
arcs in the tree, yielding a second-order model. In
contrast to previous work where this was constrained
to sibling relations of the dependent (McDonald and
Pereira, 2006), here head-grandchild relations can
be taken into account.

In all of the above cases the scoring function is
decomposed into functions that score local proper-
ties (arcs, pairs of adjacent arcs) of the graph. By
contrast, the model of Nakagawa (2007) considers
global properties of the graph that can take multi-
ple arcs into account, such as multiple siblings and
children of a node.

5.3.2 Inference
Searching for the highest scoring graph (usually a
tree) in a model depends on the factorization cho-
sen and whether we are looking for projective or
non-projective trees. Maximum spanning tree al-
gorithms can be used for finding the highest scor-
ing non-projective tree in a first-order model (Hall
et al., 2007b; Nguyen et al., 2007; Canisius and
Tjong Kim Sang, 2007; Shimizu and Nakagawa,
2007), while Eisner’s dynamic programming algo-
rithm solves the problem for a first-order factoriza-
tion in the projective case (Schiehlen and Spranger,
2007). Carreras (2007) employs his own exten-
sion of Eisner’s algorithm for the case of projective
trees and second-order models that include head-
grandparent relations.

8It is also known as an edge-factored model.
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The methods presented above are mostly efficient
and always exact. However, for models that take
global properties of the tree into account, they can-
not be applied. Instead Nakagawa (2007) uses Gibbs
sampling to obtain marginal probabilities of arcs be-
ing included in the tree using his global model and
then applies a maximum spanning tree algorithm to
maximize the sum of the logs of these marginals and
return a valid cycle-free parse.

5.3.3 Learning

Most of the graph-based parsers were trained using
an online inference-based method such as passive-
aggressive learning (Nguyen et al., 2007; Schiehlen
and Spranger, 2007), averaged perceptron (Carreras,
2007), or MIRA (Shimizu and Nakagawa, 2007),
while some systems instead used methods based on
maximum conditional likelihood (Nakagawa, 2007;
Hall et al., 2007b).

5.4 Domain Adaptation

5.4.1 Feature-Based Approaches

One way of adapting a learner to a new domain with-
out using any unlabeled data is to only include fea-
tures that are expected to transfer well (Dredze et
al., 2007). In structural correspondence learning a
transformation from features in the source domain
to features of the target domain is learnt (Shimizu
and Nakagawa, 2007). The original source features
along with their transformed versions are then used
to train a discriminative parser.

5.4.2 Ensemble-Based Approaches

Dredze et al. (2007) trained a diverse set of parsers
in order to improve cross-domain performance by
incorporating their predictions as features for an-
other classifier. Similarly, two parsers trained with
different learners and search directions were used
in the co-learning approach of Sagae and Tsujii
(2007). Unlabeled target data was processed with
both parsers. Sentences that both parsers agreed on
were then added to the original training data. This
combined data set served as training data for one of
the original parsers to produce the final system. In
a similar fashion, Watson and Briscoe (2007) used a
variant of self-training to make use of the unlabeled
target data.

5.4.3 Other Approaches

Attardi et al. (2007) learnt tree revision rules for the
target domain by first parsing unlabeled target data
using a strong parser; this data was then combined
with labeled source data; a weak parser was applied
to this new dataset; finally tree correction rules are
collected based on the mistakes of the weak parser
with respect to the gold data and the output of the
strong parser.

Another technique used was to filter sentences of
the out-of-domain corpus based on their similarity
to the target domain, as predicted by a classifier
(Dredze et al., 2007). Only if a sentence was judged
similar to target domain sentences was it included in
the training set.

Bick (2007) used a hybrid approach, where a data-
driven parser trained on the labeled training data was
given access to the output of a Constraint Grammar
parser for English run on the same data. Finally,
Schneider et al. (2007) learnt collocations and rela-
tional nouns from the unlabeled target data and used
these in their parsing algorithm.

6 Analysis

Having discussed the major approaches taken in the
two tracks of the shared task, we will now return to
the test results. For the multilingual track, we com-
pare results across data sets and across systems, and
report results from a parser combination experiment
involving all the participating systems (section 6.1).
For the domain adaptation track, we sum up the most
important findings from the test results (section 6.2).

6.1 Multilingual Track

6.1.1 Across Data Sets

The average LAS over all systems varies from 68.07
for Basque to 80.95 for English. Top scores vary
from 76.31 for Greek to 89.61 for English. In gen-
eral, there is a good correlation between the top
scores and the average scores. For Greek, Italian,
and Turkish, the top score is closer to the average
score than the average distance, while for Czech, the
distance is higher. The languages that produced the
most stable results in terms of system ranks with re-
spect to LAS are Hungarian and Italian. For UAS,
Catalan also falls into this group. The language that
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Setup Arabic Chinese Czech Turkish
2006 without punctuation 66.9 90.0 80.2 65.7
2007 without punctuation 75.5 84.9 80.0 71.6
2006 with punctuation 67.0 90.0 80.2 73.8
2007 with punctuation 76.5 84.7 80.2 79.8

Table 5: A comparison of the LAS top scores from 2006 and 2007. Official scoring conditions in boldface.
For Turkish, scores with punctuation also include word-internal dependencies.

produced the most unstable results with respect to
LAS is Turkish.

In comparison to last year’s languages, the lan-
guages involved in the multilingual track this year
can be more easily separated into three classes with
respect to top scores:

• Low (76.31–76.94):
Arabic, Basque, Greek

• Medium (79.19–80.21):
Czech, Hungarian, Turkish

• High (84.40–89.61):
Catalan, Chinese, English, Italian

It is interesting to see that the classes are more easily
definable via language characteristics than via char-
acteristics of the data sets. The split goes across
training set size, original data format (constituent
vs. dependency), sentence length, percentage of un-
known words, number of dependency labels, and ra-
tio of (C)POSTAGS and dependency labels. The
class with the highest top scores contains languages
with a rather impoverished morphology. Medium
scores are reached by the two agglutinative lan-
guages, Hungarian and Turkish, as well as by Czech.
The most difficult languages are those that combine
a relatively free word order with a high degree of in-
flection. Based on these characteristics, one would
expect to find Czech in the last class. However, the
Czech training set is four times the size of the train-
ing set for Arabic, which is the language with the
largest training set of the difficult languages.

However, it would be wrong to assume that train-
ing set size alone is the deciding factor. A closer
look at table 1 shows that while Basque and Greek
in fact have small training data sets, so do Turk-
ish and Italian. Another factor that may be asso-
ciated with the above classification is the percent-
age of new words (PNW) in the test set. Thus, the

expectation would be that the highly inflecting lan-
guages have a high PNW while the languages with
little morphology have a low PNW. But again, there
is no direct correspondence. Arabic, Basque, Cata-
lan, English, and Greek agree with this assumption:
Catalan and English have the smallest PNW, and
Arabic, Basque, and Greek have a high PNW. But
the PNW for Italian is higher than for Arabic and
Greek, and this is also true for the percentage of
new lemmas. Additionally, the highest PNW can be
found in Hungarian and Turkish, which reach higher
scores than Arabic, Basque, and Greek. These con-
siderations suggest that highly inflected languages
with (relatively) free word order need more training
data, a hypothesis that will have to be investigated
further.

There are four languages which were included in
the shared tasks on multilingual dependency pars-
ing both at CoNLL 2006 and at CoNLL 2007: Ara-
bic, Chinese, Czech, and Turkish. For all four lan-
guages, the same treebanks were used, which allows
a comparison of the results. However, in some cases
the size of the training set changed, and at least one
treebank, Turkish, underwent a thorough correction
phase. Table 5 shows the top scores for LAS. Since
the official scores excluded punctuation in 2006 but
includes it in 2007, we give results both with and
without punctuation for both years.

For Arabic and Turkish, we see a great improve-
ment of approximately 9 and 6 percentage points.
For Arabic, the number of tokens in the training
set doubled, and the morphological annotation was
made more informative. The combined effect of
these changes can probably account for the substan-
tial improvement in parsing accuracy. For Turkish,
the training set grew in size as well, although only by
600 sentences, but part of the improvement for Turk-
ish may also be due to continuing efforts in error cor-
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rection and consistency checking. We see that the
choice to include punctuation or not makes a large
difference for the Turkish scores, since non-final IGs
of a word are counted as punctuation (because they
have the underscore character as their FORM value),
which means that word-internal dependency links
are included if punctuation is included.9 However,
regardless of whether we compare scores with or
without punctuation, we see a genuine improvement
of approximately 6 percentage points.

For Chinese, the same training set was used.
Therefore, the drop from last year’s top score to this
year’s is surprising. However, last year’s top scor-
ing system for Chinese (Riedel et al., 2006), which
did not participate this year, had a score that was
more than 3 percentage points higher than the sec-
ond best system for Chinese. Thus, if we compare
this year’s results to the second best system, the dif-
ference is approximately 2 percentage points. This
final difference may be attributed to the properties of
the test sets. While last year’s test set was taken from
the treebank, this year’s test set contains texts from
other sources. The selection of the textual basis also
significantly changed average sentence length: The
Chinese training set has an average sentence length
of 5.9. Last year’s test set also had an average sen-
tence length of 5.9. However, this year, the average
sentence length is 7.5 tokens, which is a significant
increase. Longer sentences are typically harder to
parse due to the increased likelihood of ambiguous
constructions.

Finally, we note that the performance for Czech
is almost exactly the same as last year, despite the
fact that the size of the training set has been reduced
to approximately one third of last year’s training set.
It is likely that this in fact represents a relative im-
provement compared to last year’s results.

6.1.2 Across Systems
The LAS over all languages ranges from 80.32 to
54.55. The comparison of the system ranks aver-
aged over all languages with the ranks for single lan-

9The decision to include word-internal dependencies in this
way can be debated on the grounds that they can be parsed de-
terministically. On the other hand, they typically correspond to
regular dependencies captured by function words in other lan-
guages, which are often easy to parse as well. It is therefore
unclear whether scores are more inflated by including word-
internal dependencies or deflated by excluding them.

guages show considerably more variation than last
year’s systems. Buchholz and Marsi (2006) report
that “[f]or most parsers, their ranking differs at most
a few places from their overall ranking”. This year,
for all of the ten best performing systems with re-
spect to LAS, there is at least one language for which
their rank is at least 5 places different from their
overall rank. The most extreme case is the top per-
forming Nilsson system (Hall et al., 2007a), which
reached rank 1 for five languages and rank 2 for
two more languages. Their only outlier is for Chi-
nese, where the system occupies rank 14, with a
LAS approximately 9 percentage points below the
top scoring system for Chinese (Sagae and Tsujii,
2007). However, Hall et al. (2007a) point out that
the official results for Chinese contained a bug, and
the true performance of their system was actually
much higher. The greatest improvement of a sys-
tem with respect to its average rank occurs for En-
glish, for which the system by Nguyen et al. (2007)
improved from the average rank 15 to rank 6. Two
more outliers can be observed in the system of Jo-
hansson and Nugues (2007b), which improves from
its average rank 12 to rank 4 for Basque and Turkish.
The authors attribute this high performance to their
parser’s good performance on small training sets.
However, this hypothesis is contradicted by their re-
sults for Greek and Italian, the other two languages
with small training sets. For these two languages,
the system’s rank is very close to its average rank.

6.1.3 An Experiment in System Combination
Having the outputs of many diverse dependency
parsers for standard data sets opens up the interest-
ing possibility of parser combination. To combine
the outputs of each parser we used the method of
Sagae and Lavie (2006). This technique assigns to
each possible labeled dependency a weight that is
equal to the number of systems that included the de-
pendency in their output. This can be viewed as
an arc-based voting scheme. Using these weights
it is possible to search the space of possible depen-
dency trees using directed maximum spanning tree
algorithms (McDonald et al., 2005). The maximum
spanning tree in this case is equal to the tree that on
average contains the labeled dependencies that most
systems voted for. It is worth noting that variants
of this scheme were used in two of the participating
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systems, the Nilsson system (Hall et al., 2007a) and
the system of Sagae and Tsujii (2007).

Figure 1 plots the labeled and unlabeled accura-
cies when combining an increasing number of sys-
tems. The data used in the plot was the output of all
competing systems for every language in the mul-
tilingual track. The plot was constructed by sort-
ing the systems based on their average labeled accu-
racy scores over all languages, and then incremen-
tally adding each system in descending order.10 We
can see that both labeled and unlabeled accuracy are
significantly increased, even when just the top three
systems are included. Accuracy begins to degrade
gracefully after about ten different parsers have been
added. Furthermore, the accuracy never falls below
the performance of the top three systems.

6.2 Domain Adaptation Track

For this task, the results are rather surprising. A look
at the LAS and UAS for the chemical research ab-
stracts shows that there are four closed systems that
outperform the best scoring open system. The best
system (Sagae and Tsujii, 2007) reaches an LAS of
81.06 (in comparison to their LAS of 89.01 for the
English data set in the multilingual track). Consider-
ing that approximately one third of the words of the
chemical test set are new, the results are noteworthy.

The next surprise is to be found in the relatively
low UAS for the CHILDES data. At a first glance,
this data set has all the characteristics of an easy

10The reason that there is no data point for two parsers is
that the simple voting scheme adopted only makes sense with at
least three parsers voting.

set; the average sentence is short (12.9 words), and
the percentage of new words is also small (6.10%).
Despite these characteristics, the top UAS reaches
62.49 and is thus more than 10 percentage points
below the top UAS for the chemical data set. One
major reason for this is that auxiliary and main
verb dependencies are annotated differently in the
CHILDES data than in the WSJ training set. As a
result of this discrepancy, participants were not re-
quired to submit results for the CHILDES data. The
best performing system on the CHILDES corpus is
an open system (Bick, 2007), but the distance to
the top closed system is approximately 1 percent-
age point. In this domain, it seems more feasible to
use general language resources than for the chemi-
cal domain. However, the results prove that the extra
effort may be unnecessary.

7 Conclusion

Two years of dependency parsing in the CoNLL
shared task has brought an enormous boost to the
development of dependency parsers for multiple lan-
guages (and to some extent for multiple domains).
But even though nineteen languages have been cov-
ered by almost as many different parsing and learn-
ing approaches, we still have only vague ideas about
the strengths and weaknesses of different methods
for languages with different typological characteris-
tics. Increasing our knowledge of the multi-causal
relationship between language structure, annotation
scheme, and parsing and learning methods probably
remains the most important direction for future re-
search in this area. The outputs of all systems for all
data sets from the two shared tasks are freely avail-
able for research and constitute a potential gold mine
for comparative error analysis across languages and
systems.

For domain adaptation we have barely scratched
the surface so far. But overcoming the bottleneck
of limited annotated resources for specialized do-
mains will be as important for the deployment of
human language technology as being able to handle
multiple languages in the future. One result from
the domain adaptation track that may seem surpris-
ing at first is the fact that closed class systems out-
performed open class systems on the chemical ab-
stracts. However, it seems that the major problem in
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adapting pre-existing parsers to the new domain was
not the domain as such but the mapping from the
native output of the parser to the kind of annotation
provided in the shared task data sets. Thus, find-
ing ways of reusing already invested development
efforts by adapting the outputs of existing systems
to new requirements, without substantial loss in ac-
curacy, seems to be another line of research that may
be worth pursuing.
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Màrquez, Manuel Bertran, Mariona Taulé, Difda
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