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Abstract 
With the rapid growth of real 
application domains for NLP systems, 
there is a genuine demand for a general 
toolkit from which programmers with no 
linguistic knowledge can build specific 
NLP systems. Such a toolkit should 
provide an interface to accept sample 
sentences and convert them into 
semantic representations so as to allow 
programmers to map them to domain 
actions. In order to reduce the workload 
of managing a large number of semantic 
forms individually, the toolkit will 
perform what we call semantic grouping 
to organize the forms into meaningful 
groups. In this paper, we present three 
semantic grouping methods: similarity-
based, verb-based and category-based 
grouping, and their implementation in 
the SLUI toolkit. We also discuss the 
pros and cons of each method and how 
they can be utilized according to the 
different domain needs. 

1 Introduction and Motivation 

With the improvement of natural language 
processing (NLP) and speech recognition 
techniques, spoken language will become the 
input of choice for software user interfaces, as 
it is the most natural way of communication. In 
the mean time, the domains for NLP systems, 
especially those handling speech input, have 
grown rapidly in recent years. However, most 
computer programmers do not have enough 
linguistic knowledge to develop an NLP 
system to handle speech input. There is a 

genuine demand for a general toolkit from 
which programmers with no linguistic 
knowledge can rapidly build speech based 
NLP systems to handle their domain specific 
problems more accurately (Alam, 2000). The 
toolkit will allow programmers to generate 
Spoken Language User Interface (SLUI) front 
ends for new and existing applications using, 
for example, a program-through-example 
method. In this methodology, the programmer 
will specify a set of sample input sentences or 
a domain corpus for each task. The toolkit will 
then organize the sentences by meaning and 
even generate a large set of syntactic variations 
for a given sentence. It will also generate the 
code that takes a user’s spoken request and 
executes a command on an application. This 
methodology is similar to using a GUI toolkit 
to develop a graphical user interface so that 
programmers can develop GUI without 
learning graphics programming. Currently this 
is an active research area, and the present work 
is funded by the Advanced Technology 
Program (ATP) of the National Institute of 
Standards and Technology (NIST). 

In the program-through-example approach, 
the toolkit should provide an interface for the 
programmers to input domain specific corpora 
and then process the sentences into semantic 
representations so as to capture the semantic 
meanings of the sentences. In a real world 
application, this process results in a large 
number of semantic forms. Since the 
programmers have to manually build the links 
between these forms and their specific domain 
actions, they are likely to be overwhelmed by 
the workload imposed by the large number of 
individual semantic forms. In order to 
significantly reduce this workload, we can 



organize these forms in such a way so that the 
programmers can manipulate them as groups 
rather than as individual items. This will speed 
up the generation process of the domain 
specific SLUI system. We call this process the 
semantic grouping process. 

One straightforward way to group is to 
organize different syntactic forms expressing 
the same meaning together. For example,  

 
(1.1) I want to buy this book online. 
(1.2) Can I order this book online? 
(1.3) How can I purchase this book online? 
(1.4) What do I need to do to buy this book 

online?  
 

The semantic forms of the above sentences 
may not be the same, but the action the 
programmer has in mind in an e-business 
domain is more or less the same: to actually 
buy the book online. In addition to the above 
sentences, there are many variations that an 
end-user might use. The embedded NLP 
system should be able to recognize the 
similarity among the variations so that the 
SLUI system can execute the same command 
upon receiving the different queries. This 
requires a group to contain only sentences with 
the same meaning. However in real 
applications, this might be difficult to achieve 
because user requests often have slight 
differences in meaning. 

This difficulty motivates a different style 
for semantic grouping: organizing the semantic 
forms into groups so that those in the same 
group can be mapped roughly to the same 
action. The action can be either a command, 
e.g., buy something, or concerning an object, 
e.g., different ways of gathering information 
about an object. For example, sentence (1.5) 
would be grouped together with the above 
example sentences because it poses the same 
request: buy books; and sentences (1.6) to (1.8) 
would be in one group because they are all 
about price information. 

 
(1.5) I want to buy the latest book about e-

business. 
 
(1.6) Please send me a price quote. 
(1.7) What is the reseller price? 
(1.8) Do you have any package pricing for 

purchasing multiple products at once? 

This type of grouping is the focus of this 
paper. We propose three grouping methods: 
similarity-based grouping, verb-based 
grouping and category-based grouping. The 
process of grouping semantic forms is domain 
dependent and it is difficult to come up with a 
generally applicable standard to judge whether 
a grouping is appropriate or not. Different 
grouping techniques can give programmers 
different views of their data in order to satisfy 
different goals.  

This paper is organized into 6 sections. In 
Section 2, we briefly describe the system for 
which the grouping algorithms are proposed 
and implemented. Section 3 presents the three 
grouping methods in detail. In Section 4, we 
describe how the algorithms are implemented 
in our system. We test the methods using a set 
a sentences from our corpus and discuss the 
pros and cons of each method in Section 5. 
Finally, in Section 6, we draw conclusions and 
propose some future work. 

2 SLUITK 

As mentioned in the previous section, the 
Spoken Language User Interface Toolkit 
(SLUITK) allows programmers with no 
linguistic knowledge to rapidly develop a 
spoken language user interface for their 
applications. The toolkit should incorporate 
the major components of an NLP front 
end, such as a spell checker, a parser and a 
semantic representation generator. Using 
the toolkit, a programmer will be able to create 
a system that incorporates complex NLP 
techniques such as syntactic parsing and 
semantic understanding.  

2.1 The Work Flow 

Using an Automatic Speech Recognition 
(ASR) system, the SLUITK connects user 
input to the application, allowing spoken 
language control of the application. The 
SLUITK generates semantic representations of 
each input sentence. We refer to each of these 
semantic representations as a frame, which is 
basically a predicate-argument representation 
of a sentence.  

The SLUITK is implemented using the 
following steps: 



1. SLUITK begins to create a SLUI by 
generating semantic representations of 
sample input sentences provided by the 
programmer. 

2. These representations are expanded using 
synonym sets and other linguistic devices, 
and stored in a Semantic Frame Table 
(SFT). The SFT becomes a 
comprehensive database of all the 
possible commands a user could request a 
system to do. It has the same function as 
the database of parallel translations in an 
Example-based machine translation 
system (Sumita and Iida, 1991). 

3. The toolkit then creates methods for 
attaching the SLUI to the back end 
applications. 

4. When the SLUI enabled system is 
released, a user may enter an NL 
sentence, which is translated into a 
semantic frame by the system. The SFT is 
then searched for an equivalent frame. If a 
match is found, the action or command 
linked to this frame is executed. 

 
In a real application, a large number of 

frames might be generated from a domain 
corpus. The semantic grouper takes the set of 
frames as the input and outputs the same 
frames organized in a logical manner.  

2.2 The Corpus 
We use a corpus of email messages from our 
customers for developing and testing the 
system. These email messages contain 
questions, comments and general inquiries 
regarding our document-conversion products.  
We modified the raw email programmatically 
to delete the attachments, HTML and other 
tags, headers and sender information. In 
addition, we manually deleted salutations, 
greetings and any information that was not 
directly related to customer support. The 
corpus contains around 34,640 lines and 
170,000 words. We constantly update it with 
new email from our customers.  

We randomly selected 150 sentential 
inquiries to motivate and test the semantic 
grouping methods discussed in this paper. 

3 Semantic Grouping 

We have mentioned in Section 1 that grouping 

semantic frames is domain dependent.  
Grouping depends on the nature of the 
application and also the needs of the domain 
programmer. Since this is a real world 
problem, we have to consider the efficiency of 
grouping. It is not acceptable to let the 
programmer wait for hours to group one set of 
semantic forms. The grouping should be fairly 
fast, even on thousands of frames. 

These different considerations motivate 
several grouping methods: similarity-based 
grouping, verb-based grouping and category-
based grouping. In this section, we describe 
each of these methods in detail. 

3.1 Similarity-based Grouping  
Similarity-based grouping gathers sentences 
with similar meanings together, e.g., sentences 
(1.1) to (1.4). There is a wide application for 
this method. For example, in open domain 
question-answering systems, questions need to 
be reformulated so that they will match 
previously posted questions and therefore use 
the cached answers to speed up the process 
(Harabagiu et al., 2000).   

The question reformulation algorithm of 
Harabagiu et al. tries to capture the similarity 
of the meanings expressed by two sentences. 
For a given set of questions, the algorithm 
formulates a similarity matrix from which 
reformulation classes can be built. Each class 
represents a class of equivalent questions. 

The algorithm for measuring the similarity 
between two questions tries to find lexical 
relationships between every two questions that 
do not contain stop words. The algorithm 
makes use of the WordNet concept hierarchy 
(Fellbaum, 1998) to find synonym and 
hypernym relations between words. 

This algorithm does not infer information 
about the meanings of the questions, but rather 
uses some kind of similarity measurement in 
order to simulate the commonality in meaning. 
This is a simplified approach. Using different 
threshold, they can achieve different degrees of 
similarity, from almost identical to very 
different. 

This method can be used for similarity-
based grouping to capture the similarity in 
meanings expressed by different sentences. 



3.2 Verb-based Grouping 
Among the sentences normally used in the e-
business domain, imperative sentences often 
appear in sub-domains dominated by 
command-and-control requests. In such an 
application, the verb expresses the command 
that the user wants to execute and therefore 
plays the most important role in the sentence. 
Based on this observation, a grouping can be 
based on the verb or verb class only. For 
example, sentences with buy or purchase etc. 
as the main verbs are classified into one group 
whereas those with download as the main verb 
are classified into a different group, even when 
the arguments of the verbs are the same. 

This is similar to sorting frames by the 
verb, taking into account simple verb synonym 
information.  

3.3 Category-based Grouping 
Since SLUITK is a generic toolkit whereas the 
motivation for grouping is application 
dependent, we need to know how the 
programmer wants the groups to be organized. 
We randomly selected 100 sentences from our 
corpus and asked two software engineers to 
group them in a logical order. They came up 
with very different groups, but their thoughts 
behind the groups are more or less the same. 
This motivates the category-based grouping. 

This grouping method puts less emphasis 
on each individual sentence, but tries to 
capture the general characteristics of a given 
corpus.  For example, we want to group by the 
commands (e.g., buy) or objects (e.g., a 
software) the corpus is concerned with. If a 
keyword of a category appears in a given 
sentence, we infer that sentence belongs to the 
category. For example, sentences (1.6) to (1.8) 
will be grouped together because they all 
contain the keyword price. 

These sentences will not be grouped 
together by the similarity-based method 
because their similarity is not high enough, nor 
by the verb-based method because the verbs 
are all different. 

4 Grouping in SLUITK 

Because we cannot foresee the domain needs 
of the programmer, we implemented all three 

methods in SLUITK so that the programmer 
can view their data in several different ways.  
The programmer is able to choose which type 
of grouping scheme to implement. 

In the question reformulation algorithm of 
(Harabagiu, et al. 2000), all words are treated 
identically in the question similarity 
measurement. However, our intuition from 
observing the corpus is that the verb and the 
object are more important than other 
components of the sentence and therefore 
should be given more weight when measuring 
similarity. In Section 4.1, we describe our 
experiment with the grouping parameters to 
test our intuition. 

4.1 Experimenting with Parameters 
We think that there are two main 
parameters affecting the grouping result: the 
weight of the syntactic components and the 
threshold for the similarity measurement in the 
similarity-based method. Using 100 sentences 
from our corpus, we tried four different types 
of weighting scheme and three thresholds with 
the category-based methods. Human judgment 
on the generated groups confirmed our 
intuition that the object plays the most 
important role in grouping and the verb is the 
second most important. The differences in 
threshold did not seem to have a significant 
effect on the similarity-based grouping.  This 
is probably due to the strict similarity 
measurement. 

This experiment gives us a relatively 
optimal weighting scheme and threshold for 
the similarity-based grouping. 

One relevant issue concerns the 
simplification of the semantic frames. For a 
sentence with multiple verbs, we can simplify 
the frame based on the verbs used in the 
sentence. The idea is that some verbs such as 
action verbs are more interesting in the e-
business domain than others, e.g., be and have. 
If we can identify such differences in the verb 
usage, we can simplify the semantic frames by 
only keeping the interesting verb frames. For 
example, in the following sentences, the verb 
buy is more interesting than be and want, and 
the generated semantic frames should contain 
only the frame for buy. 
 
(4.1) Is it possible to buy this software online? 
(4.2) I want to buy this software online.  



 
Figure 1: A screen shot of SLUITK 

We make use of a list of stop-words from 
(Frakes, 1992) in order to distinguish between 
interesting and uninteresting verbs. We look 
for frames headed by stop-words and follow 
some heuristics to remove the sub-frame of the 
stop-word. For example, if there is at least one 
verb that is not a stop-word, we remove all 
other stop-words from the frame. In the 
sentence [Is it possible to] buy the software in 
Germany?, be is a stop-word, so only the 
frame for buy is kept. This process removes the 
redundant part of a frame so that the grouping 
algorithm only considers the most important 
part of a frame. 

4.2 Implementation in SLUITK 
Figure 1 shows a screen shot of the interface of 
the SLUITK, which shows several grouped 
semantic frames. In this section, we give more 
detail about the implementation of the three 
grouping methods used in SLUITK.  
 
Similarity-based grouping 

 
Similar to (Harabagiu, et al. 2001), our 
similarity-based grouping algorithm calculates 
the similarity between every two frames in the 
input collection. If the similarity is above a 
certain threshold, the two frames are 

considered similar and therefore should be 
grouped together. If two frames in two 
different groups are similar, then the two 
groups should be combined to a single group. 
The central issue here is how to measure the 
similarity between two frames. 

Since we have found that some syntactic 
components are more important to grouping 
than others, we use a weighted scheme to 
measure similarity. For each frame, all words 
(except for stop-words) are extracted and used 
for similarity calculation. We give different 
weights to different sentence components. 
Since in an e-business domain, the verb and 
the object of a sentence are usually more 
important than other components because they 
express the actions that the programmers want 
to execute, or the objects for which they want 
to get more information, the similarity of these 
components are emphasized through the 
weighting scheme. The similarity score of two 
frames is the summation of the weights of the 
matched words.  

There is a match between two words when 
we find a lexical relationship between them. 
We extend the method of (Harabagiu, et al. 
2000) and define a lexical relationship between 
two words W1 and W2 as in the following: 



Table 1 : Comparison of grouping methods 
 
 
1. If W1 and W2 have a common 

morphological root. Various stemming 
packages can be used for this purpose, for 
example, Porter Stemmer (Porter, 1997). 

2. If W1 and W2 are synonyms, i.e., W2 is 
in the WordNet synset of W1. 

3. If the more abstract word is a WordNet 
hypernym of the other. 

4. If one word is the WordNet holonym of 
the other (signaling part of, member of 
and substance of relations); 

5. If W1 is the WordNet antonym of W2.  
 

Domain specific heuristics can also be used 
to connect words. For example, in the e-
business domain, you and I can be treated as 
antonyms in the following sentences: 

 
(4.3) Can I buy this software? 
(4.4) Do you sell this software? 
 
When none of the above is true, there is no 

lexical relation between two given words. 
Because the similarity-based grouping 

needs to consult WordNet frequently for 
lexical relations, it becomes very slow for even 
a few hundred frames. We have to change the 
algorithm to speed up the process, as it is too 
slow for real world applications.  

Instead of comparing every two frames, we 
put all the words from an existing group 
together. When a new frame is introduced, we 
compare the words in this new frame with the 
word collection of each group. The similarity 
scores are added up as before, but it needs to 
be normalized over the number of words in the 
collection. When the similarity is above a 
certain threshold, the new frame is classified as 
a member of the group. This significantly 
reduces the comparison needed for classifying 
a frame, and therefore reduces the number of 
times WordNet needs to be consulted. 

We compared this improved algorithm with 
the original one on 30 handcrafted examples; 
the generated groups are very similar. 
 

Verb-based grouping 
 
The verb-based grouping implementation is 
fairly straightforward and has been described 
in Section 3.2. 
 
Category-base grouping 

 
For the category-based method, we first count 
all the non stop-words in a given corpus and 
retrieve a set of most frequent words and their 
corresponding word classes from the corpus. 
This process also makes use of the WordNet 
synonym, hypernym, holonym and antonym 
information. These word classes form the 
categories of each group. We then check the 
verbs and objects of each sentence to see if 
they match these words. That is, if a category 
word or a lexically related word appears as the 
verb or the object of a sentence, the sentence is 
classified as a member of that group. For 
example, we can pick the most frequent 20 
words and divide the corpus into 21 groups, 
where the extra group contains all sentences 
that cannot be classified. The programmer can 
decide the number of groups they want. This 
gives the programmer more control over the 
grouping result. 

5 Discussion 

We tested the three methods on 100 sentences 
from our corpus. We had 5 people evaluate the 
generated groups. They all thought that 
grouping was a very useful feature of the 
toolkit. Based on their comments, we 
summarize the pros and cons of each method 
in Table 1. 

The similarity-based grouping produces a 
large number of groups, most of which contain 
only one sentence. This is because there are 
usually several unrelated words in each 
sentence, which decreases the similarity 
scores. In addition, using WordNet we 
sometimes miss the connections between 
lexical items. The verb-based grouping 

 Similarity-based Verb-based Category-based 
Group Size small small large 
Number of Groups large large variable 
Speed slow on large corpus fast slow on large corpus 
Application general command-and-control only general 



produces slightly larger groups, but also 
produces many single sentence groups. 
Another problem is that when sentences 
contain only stop-word verbs, e.g., be, the 
group will look rather arbitrary. For example, a 
group of sentences with be as the main verb 
can express completely different semantic 
meanings. The small group size is a 
disadvantage of both methods. The number of 
groups of the category-based grouping can 
change according to the user specification. In 
general it produces less groups than the other 
methods and the group size is much larger, but 
the size becomes smaller for less frequent 
category words. 

Both the similarity-based and category-
based grouping methods are slow because they 
frequently need to use WordNet to identify 
lexical relationships. The verb-based method is 
much faster, which is the primary advantage of 
this method. 

The verb-based method should be used in a 
command-and-control domain because it 
requires at least one non stop-word verb in the 
sentence. However, it will have a hard time in 
a domain that needs to handle questions. From 
the point of view of assigning a domain 
specific action to a group, this grouping is the 
best because each verb can be mapped to an 
action.  Therefore, the programmer can link an 
action to each group rather than to each 
individual frame. When the group size is 
relatively large, this can greatly reduce the 
workload of the programmer.  

The category-based method produces a 
better view of the data because the sentences in 
each group seem to be consistent with the 
keywords of the category. The disadvantage is 
that it is difficult to link a group to a single 
action, and the programmer might have to re-
organize the groups during action assignment.  

The similarity-based method did not 
perform well on the testing corpus, but it might 
work better on a corpus containing several 
different expressions of the same semantic 
information. 

In summary, each method has its 
advantages and disadvantages. The decision of 
which one to choose depends mainly on the 
needs of the domain programmer and the 
composition of the input corpus. 

 

6 Conclusions and Future Work 

In this paper we propose semantic grouping as 
a way to solve the problem of manipulating 
semantic frames in developing a general 
Spoken Language User Interface Toolkit 
(SLUITK). We introduced three methods for 
grouping semantic frames generated by the 
NLP components of the toolkit. We tested the 
methods and discussed the advantages and 
disadvantages of each method. Since the 
judgment of the grouping result is application 
dependent, the methods co-exist in our 
SLUITK to suit the requirement of different 
applications. 

Future work includes improving the 
efficiency and accuracy of the methods and 
testing them on a larger corpus. 
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