
A Prototype of a G r a m m a r Checker for Czech i

Tomtit, Ho lan
Dept.of Software and Computer

Science Education
Charles University, Prague,

Czech Republic
holan @ksvi.ms.mff.cuni.cz

Vladis lav Kubofi
lnst.of Formal and AppI.Ling.

Charles University, Prague,
Czech Republic

vk@u fal.ms.mff.cuni.cz

Mart in Plfitek
Dept.of Theoretical Comp.Sc.

Charles University, Prague,
Czech Republic

platek@kA:i.ms.mff.cuni.cz

A b s t r a c t

This paper describes the implementation of a
prototype of a grammar based grammar checker for
Czech and the basic ideas behind this implementation.
The demo is implemented as an independent program
cooperating with Microsoft Word. The grammar
checker uses specialized grammar formalism which
generally enables to check errors in languages with a
very high degree of word order freedom.

Introduct ion
Automatic grammar checking is one of the fields

of natural language processing where simple means do
not provide satisfactory results. This statement is even
more true with respect to grammar checking of the
so-called free word order languages. With the growing
degree of word order freedom the usability of simple
pattern matching techniques decreases. In languages
with such a high degree of word order freedom as in
most Slavic languages the set of syntactic errors that
may be detected by means of simple pattern matching
methods is almost negligible. This is probably one of
the reasons, why even though the famous paper [CH83]
was written as long as 13 years ago, there are still very
few articles about this topic, except papers like [K94] or
[M96] which appeared only during the last three years.

In the present paper we describe the basic ideas
behind an implementation of a prototype of a grammar
checker for Czech. During the development of this
application we had to solve a number of problems
concerning the theoretical background, to develop a
formalism allowing efficient implementation and of
course to create a grammar and define the structure of
the lexical data. The last but not least problem was to
incorporate the prototype into an existing text editor.

H o w does the system work
In order to demonstrate the function of the pivot

implementation of our system we decided to connect it
to a commercially available text editor. We intended to

create a DLL library with the standard grammar
checking interface required by a particular text editor.
This idea turned out to be unrealistic because the
necessary interface is among the classified inside
information in most companies. Fortunately there is the
possibility to use a concept of Dynamic Data Exchange
(DDE) for the communication between programs in the
Microsoft Windows environment. This type of
connection is of course much slower than the intended
one, but for the purpose of this demonstration the
difference in speed is not so important.

Our system can work with any text editor under
Windows that contains a macro language supporting the
DDE connection. For the purpose of the pivot
implementation of the system we have chosen Microsoft
Word 6.0. The grammar checker is implemented as an
independent Windows application (GRAMMAR.EXE)
which runs on the background of the Word. In order to
be able to use GRAMMAR.EXE, we had to create a
macro Grammar, assigned to the Grammar Checker
item in the Tools menu. This macro selects a current
sentence, sends it to GRAMMAR.EXE via DDE,
receives the result and indicates the type of the result to
the user. This activity is being performed for all
sentences in the selection or for all sentences from the
position of the cursor till the end of document.

: 3+6
ZVOLEN6HO-SKONEi/CASE_DISAGR IN THE F

OBDOB[-ZVOLEN6HO/CASE_DISAGR IN THE F
OBDOB[- Z'VOLEN6HO/ERRCASE!
ELENI~ - ZVOLEN{~HOIERRNUMI

n~o,t: Is.or] E.o,p.,,: ~ ' ~ ~ [
i

l J

147

The user may get several types of messages
about the correctness o f the text:
a) The macro changes the color o f words in the text

according to the type o f the detected error - the
unknown words are marked blue, the pairs of words
involved in a syntactic error are marked red.

b) The macro creates a message box with a warning
each time there is an undesired result o f grammar
checking - - either there was no result or the
sentence was too complicated.

c) In case that the grammar checker identified and
localized an error, it creates a message box with a
short description o f the error(s).

Because the grammar checker is running as an
independent application, the user may also look at the
complete results provided by it. When a message box
containing an error message appears on the screen, the
user may switch to GRAMMAR and get an additional
information. The main window o f GRAMMAR is able
to provide either the complete list o f errors, the statistics
concerning for example the number o f different
syntactic trees built during grammar checking or even
the result in the form of a syntactic tree. We do not
suppose that the last option is interesting for a typical
user, but if we do have all this information, why should
we throw it out?

-<.... ---.....

obC~bi / j po ".

I ~ s viak /\o \.
/ - '- \

?°° j 7"
oedmi / tfe©h

prur~ch

The architecture of the system
The design of the whole system is shown in the

Fig. I. The grammar checker is composed basically o f
three parts:

I.Morphological and lexical analysis
This part is in fact an extended spelling checker.

The input text is first checked for spelling errors, then
the lexical and morphological analysis creates data,
which are combined with the information contained in a

separate syntactic dictionary. It would o f course be
possible to use only one dictionary containing
morphosyntactic information about particular words
(lemmas), but for the sake of an easier update of
information during the development o f the system we
have decided to keep morphemic and syntactic data in
separate files.

Morphological / ' ~oe l " l in ~ " ~ I ~ f ot~ t~

dictionary j

USER

 n°n "JLJ

Fig l:The architecture of the system

2 . G r a m m a r checking (extended var ian t of syntactic
parsing)

This is the main part o f the system. It tries to
analyze the input sentence. There are three possible
results o f the analysis:

a) The analysis is successful and no syntactic
inconsistencies were found (at this stage of
processing it is too early to use the term syntactic
error, because in our terminology the term error is
reserved for something what is being announced to
the user after the evaluation) - - in this case the
sentence is considered to be correct and no message
is issued.

b) The analysis is successful, but all results contain at
least one syntactic inconsistency. In this case it is
necessary to pass the results to the evaluation phase.

c) The analysis fails and (probably for the reason of the
incompleteness o f the grammar) it cannot say
anything about the input sentence. In such a case no
error message is issued. We do not use any partial
results for the evaluation o f the possible source of an
error. Partial results are misleading, because it is
often the case that the error is buried somewhere
inside the partial tree and tlo operations performed
on partial trees can provide a correct error message.
Besides that operations on (hundreds or thousands)

148

partial trees are very ineffective and they can also
slow down substantially the processing of the given
sentence.

3.Evaluation
This phase takes the results of the previous phase

in the form of syntactic trees containing markers
describing individual syntactic inconsistencies. It tries
to locate the source o f the error using an algorithm that
compares available trees. According to the settings
given by the user the evaluation phase issues warnings
or error messages.

The core of the system is the second, grammar
checking phase, therefore we will concentrate on the
description of that phase.

Process of grammar checking
The design of our system was motivated by

a simple and natural idea - - the grammar checker
should not spend too much time on simple correct
sentences. The composition o f a grammar checking
module tries to stick to this idea as much as possible.
The processing of an input sentence is divided into
three phases:

a) Positive projective

This phase is in fact a standard parser - - it
checks if it is possible to represent a given input
sentence by means o f a projective syntactic tree not
containing any negative symbol (these symbols
represent the application of a grammar rule with relaxed
constraints or an error anticipating rule). If the answer is
positive, the sentence is considered to be correct and no
error message is issued.

As an example we may take the following simple
sentence: "Karlova ~ena zal6vala kv~tiny." (Word for
word translation: Charles'[fern.sing] wife watered
therefore its processing ends here. The system
recognizes the structure of this sentence in the following
way:

LIEFT $ lENT I NEL

ZALEUALA

I<UET I NV " ,
/ /

K A R L I ~ I A

b) Positive nonprojective & negative projective

This phase tries to find a syntactic tree which
either contains negative symbols or nonprojective
constructions. A nonprojective subtree is a subtree with
discontinuous coverage. It is often the case - - for
example in wh-sentences - - that the sentence may be
considered either syntactically incorrect or
nonprojective - - s e e examples in [COL94]. if such a
syntactic tree exists, the evaluation phase tries to decide
if there should be an error message, warning or nothing.

Let us present a slightly modified sentence from
the previous paragraph: "Karlovy ~ena zal6vala
kv~tiny." (Word for word translation: Charles'[fem.pl.]
wife watered flowers). This sentence is ambiguous, it is
either correct and nonprojective (meaning: Woman
watered Charles' flowers) or incorrect (disagreement in
number between "Karlovy" and "~ena") and projective.
Both results are achieved by this phase o f the grammar
checker:

LEFT_.SEHTIHEL

% ~ E U A L A

ZENA " .

i

. /

KI:IRL(3UY

Projective reading contains an error

LEFT _$ EiNT 1 NEL

Z A L . E U ~ A

Z~NA KUET I ICY "

K A R I - O U Y

Nonprojective reading

c) Negative nonprojective

Both nonprojective constructions and negative
symbols are allowed. If this phase succeeds, the
evaluation module issues a relevant error message or
warning. In case that neither phase provides any result,
no error message is issued. In case that the user wants to
know which sentences were not analyzed properly, s/he
may obtain a warning.

149

Although this division into phases worked fine
for short sentences (for the sentences not more than
15 words long the first phase usually took about
1 second on Pentium 75 MHz), long and complicated
sentences were unacceptably slow (even tens of
seconds). These results turned our attention to the
problem how to speed up the processing of correct
sentences even further.

With the growing length of sentences the parsing
will be more complex with respect both to the length of
the processing and to the number of resulting syntactic
structures. Let us demonstrate the problem on a sample
sentence from the corpus of Czech newspaper texts
from the newspaper Lidov~ noviny. Let us take the
sentence:

"KDS nep~edpokhidfi spoluprfici se stranou pana
Sladka a neni pravdou, ~.e ptedseda k~est'ansk37ch
demokratfi pan Benda v telefonick6m rozhovoru s
Petrem Pithartem prosazoval ing. Dejmala do funkce
ministra ~ivotniho prost~edi."

(Word for word translation: "CDP [does] not
suppose cooperation with party [of] Mister Slfidek and
[it] isn't true, that chairman [of] Christian democrats
Mister Benda in telephone discussion with Petr Pithart
enforced ing. Dejmal to function [of] minister [of]
environment.")

In this basic form of the sentence, which is an
exact transcription of the text from the corpus, the
processing by the positive projective phase of our
parser takes 13,07s and it provides 26 different variants
of syntactic trees. During the processing there were
2272 items derived. The testing of this sentence and
also of all the following ones was performed on
Pentium 75MHz with 16MB RAM.

Such a relatively large number of variants is
caused by the fact that our syntactic analysis uses only
purely syntactic means - we do not take into account
either semantics or textual or sentential context. That is
the reason why free modifiers at the end of our sample
sentence create a great number of variants of syntactic
structures and thus make the processing longer and
more complicated. In order to demonstrate this problem
we will take this sentence and modify it trying to find
out what the main source of ineffectiveness of its
parsing is.

If we look more closely at the number of
ambiguities present with individual words, we notice
that the most ambiguous word is the word
(abbreviation) "ing." This word form is the same in all
cases, genders and numbers. If we substitute this
abbreviation by the full form of the word ("in~en~,ra"
[engineer - [gem]]) we get the following results: the
sentence is processed 8,95s, the number of variants
decreases by four (22) and the number of derived items

is, of course, also smaller (I 817). The gain of speed
would be even greater would we have worked with a
negative or a nonprojective variant of the parser.

The next step is to delete further groups of words
from the input sentence. Among the suitable candidates
there is, for example, the prepositional phrase "v
telefonickEm rozhovoru" (in [the] telephone
discussion). This phrase can be easily checked for
grammatical correctness locally, because it has a clear
leR and right borders (prepositions "v"and "s"). Here
we can easily solve the problem where the nominal
group ends on the right hand side. in general, we need
to parse the whole sentence in order to get this
information, but in some specific cases we can rely only
on the surface word order.

After we had deleted this phrase, the processing
time went down to 8,79s, the same number of syntactic
representations as in the previous case was derived (22)
and the number of items was slightly lower (1789). This
phrase is therefore certainly not the main source of
ineffectiveness in parsing. In order to speed up the
processing even more we have to use another type of
simplification.

The first step of simplifying the original input
sentence represented almost 50% acceleration although
it was only a cosmetic change from an abbreviation to a
full word form. From the point of view of Iocalisation of
grammatical inconsistencies we can proceed even
farther - the group title+surname in fact represents only
one item; if we remove titles preceding surnames we do
not change syntactic structure of the sentence. It is
locally only a tiny bit simpler. When we look more
closely at the resulting syntactic representation of the
previous variants of the input sentence we may notice
that the word "in~en3~ra" [engineer[gen.]] figures
(inadequately, of course, in this case) also as a right-
hand attribute to the word "Pithartem[instr.]", as it is
shown in the following screenshots (for the sake of
simplicity we demonstrate only the relevant part of
derivation trees).

7 "°° \ PR3Eo Eo° po. \ \

T ELEFON I CKEBBT REH \ II I NI S T RA
DEHOKRRTU?~/ \

KR3EST3 ANSKV2CH DEJMALA
Z31UOTN! ZHO

1 5 0

F, nosoo._

~ / \ \ .

°EMOKRATU?
/ / PROSTR3EDI 2

KR3ES T3RNS KY2CH /

Z31VOTNI 2HO

P R O S A O | L ~
/ ~ s ~-... I .Q. -oo \ ~ / oo,

PR3EDSEDA PAN FUNKCE
DEJMALA

ROZHOUOR~ITHARTEM
/ /

TELEFONICKEBBTREM MINISTRA
DEMOKRATU?

PROSTR3EDI2
KR3EST3ANSKV2CH /

Z31UOTNI2HO

Let us remove the word "in~en~,ra" from the
input sentence altogether. This time the processing time
is only 3,74s, only 10 structures are created and 1021
items are derived. Another logical step is to remove all
other first names and titles which are placed
immediately in front of their governing words. Those
words are "pana" [mister [gen.]], "pan" and "Petrem".
The claim that the first two words are unambiguous is
supported by the fact that the form of the word "p~in"
[mister] is different in Czech in case the word is
"independent" and in case it is used as a title (p~na vs.
pana [gen.,acc.], pzin vs. pan[nom.]). When we make
this change we get more than 50% shorter processing
time, namely 1,71 s, also the number of resulting
structures is a half of the original number (5) and only
587 items are derived. Another change we would like to
demonstrate is the deletion of all other free modifiers
the result of which is a certain "backbone" of the
sentence.

After having carried out all deletions, we arrive
at the following structure:

"KDS nepfedpokl~id~i spolupr~ici a neni pravdou,
~e Benda prosadil Dejmala."

(Word for word translation: "CDP [does] not-
suppose cooperation and [it] isn't true, that Benda
enforced Dejmal.")

The result of the processing is a unique structure
and 141 items are derived in 0,22s. The last variant of
the input sentence will serve as a contrast to the
previous ones. Let us take the last clause of the
sentence, namely

"P~edseda kPest'anskych demokratO pan Benda v
telefonick6m rozhovoru s Petrem Pithartem prosazoval

in~en~ra Dejmala do funkce ministra ~.ivotniho
prost~edi."

["Chairman [of] Christian democrats Mister
Benda in telephone discussion with Petr Pithart
enforced ing. Dejmal to function [of] minister [of]
environment.").

If we take into account the results of the previous
examples we should not be surprised by the results. The
processing time is 2,25s, I 0 structures were created and
722 items were derived.

This example and also other test data showed
that the main source of ineffectivity are clauses with a
big number of free modifiers and adjuncts rather than
complex sentences with many clauses. These results
have led us to a layered design of grammar for positive
projective parsing. The core idea of this approach is the
following:

Syntactic constructions which even in free word
order languages may be parsed locally (certain
adjectival or prepositional phrases etc.) should be
parsed first in order to avoid their mutual unnecessary
(from the point of view of grammar checking!)
combinations. This means that the grammar should be
divided into certain layers of rules (not necessarily
disjunctive), which will be applied one atter the other
(in principle they may be applied even in cycles, but
this options is not used in our implementation).

In the pivot version of our system we use the
following layers:

I st layer: a metarule for processing titles and
abbreviations preceding names

2nd layer: a metarule from the first layer together with
metarules for processing prepositional and
adjectival phrases

3rd layer: metarules from the previous layer together
with metarules filling the valency slots and other
metarules on the level of one clause

4th layer: metarules from the previous layer together
with those processing of complex sentences

5th layer: metarules for processing the left sentinel and
the right hand side sentential border

The application of layers may slow down the
processing of short sentences (it has a fixed cost of
opening the description file and consulting it during
parsing process), therefore it is applied only to

1 5 1

sentences longer than certain threshold (currently 15
words).

Another important point is, that the results of
parsing in layers provides only positive information (i.e.
it is able to sort out sentences which are certainly
correct, but the failure of parsing in layers does not
necessarily mean that the sentence is incorrect). The
same approach may not be used for error localization
and identification, although the cases when parsing in
layers fails on a correct sentence are quite rare.

T h e i m p l e m e n t a t i o n

The implementation of our system was to a big
extent influenced by the demand of effectiveness. For
this reason we had to abandon even feature structures as
the form of the representation o f lexical data. Our data
structure is a set o f attribute-value pairs with the data
about valency frames of particular words as the only
complex values (embedded attribute-value pairs).

An example of the representation of the Czech
wordform "informoval" ([he] informed) follows:

informoval
lexf: informovat

wcl: vb

syntcl: v

v cl: full

refl: 0

aspect: prf

frameset:
([actant: act case: nom prep: 0

[actant: adr case: acc prep: 0]

[actant: pat case: clause prep:
])

neg: no

v form: pastp
gender: ? inan , anim t

num: sg

END

]

z3e

The grammar of the system is composed of
metarules representing whole sets of rules of the
background formalism called Robust Free Order
Dependency Grammar (RFODG). The limited space of
this paper does not allow to present the full description
of RFODG here. The definition may be found for
example in [TR96].

The RFODG provides a formal base for the
description ofnonprojective and incorrect syntactic
constructions. It introduces three measures by means of
which it is possible to classify the degree of
nonprojectivness and incorrectness of a particular
sentence. In this paper we would like to stress one
important feature of this formalism, namely the

classification of the set of symbols which are used by
RFODG into three types:
a) terminals and nonterminals
b) deletable and nondeletable symbols
c) positive and negative symbols

The sets under a) have the usual meaning, the
sets under b) serve for the classification of syntactic
inconsistencies and the sets under c) serve for their
Iocalisation. The union of terminals and nonterminals is
exactly the set of all symbols used by RFODG. The
same holds about the union of deletable and
nondeletable symbols and also about the union of
positive and negative symbols. In other words, each
symbol used by RFODG belongs to exactly one set
from each pair of sets under a), b) and c).

This classification therefore allows to handle
ru!es describing both correct and erroneous syntactic
constructions in a uniform way and to use a single
grammar for the description of both types of syntactic
constructions. Whenever a metarule describing syntactic
inconsistency is used during the parsing process, a
negative symbol is inserted into the tree created
according to the grammar.

The metarules express a procedural description
of the process of checking the applicability of a given
metarule to a particular pair of input items A and B (A
stands to the left from B i n the input). In case that a
particular rule may be applied to items A and B, a new
item X is created. It is possible to change values of the
resulting item X by means of an assignment operator :=
• The constraint relaxation technique is implemented in
the form of so called "soft constraints" - the constraints
with an operator ? accompanied by an error marker may
be relaxed in phases b) and c) ("hard constraints" with
an operator = may never be relaxed).

The error anticipating rules are marked by a
keyword NEGATIVE at the beginning of the rule and
are applied only in phases b) and c). The keyword
PROJECTIVE indicates that the rule may be applied
only in a projective way.

An example of a (simplified) metarule desc,'ibing
the attachment of a nominal modifier in genitive case
from the right hand side of the noun:

PROJECTIVE

IF A.SYNTCL = n THEN ELSE

IF A.SYNTCL = prep2

FAIL ENDIF

ENDIF

B.SYNTCL = n

B.case = gen

A.RIGHTGEN = yes

IF A.TITUL : yes THEN

THEN ELSE

152

THEN

THEN

IF A.CASE = gen THEN

IF A.GENDER = B.GENDER

IF A.NUM : B.NUM

FAIL ELSE ENDIF

ELSE ENDIF

ELSE ENDIF

ELSE ENDIF

X::A

X.RIGHTGEN := no

OK

END P

The interpretation of the grammar is performed
by means o f a slightly modified CYK algorithm (a
description of this algorithm may be found for example
in [$97]. The grammar works with unambiguous input
data (ambiguous words are represented as sets of
unambiguous items). All partial parses from the first
phase are used in the phases b) and c). For the purpose
of testing and debugging the system we use full parsing
even in the first phase.

Speeding up t h e p e r f o r m a n c e

It is often the case that nondeterministic parsers
the author of the grammar has to prevent an unnecessary
multiplication o f results by means of"tricks" which are
not supported by the linguistic theory - - let us take for
example the problem of subject - - predicate - - object
construction. If we do not put any additional restriction
on the order of application o f rules then the rule filling
the subcategorization slots for subject and object may
be applied in two ways, either first filling the slot for the
subject and then the object or vice versa. Both ways
create the same syntactic structure.

In such a case it is necessary to apply some
additional constraints in the grammar - - for example
the restriction on the order of subcategorization (an item
to the left o f a verb should be processed first). This
approach makes the grammar more complicated than it
is necessary and it may also influence the quality o f
results (an error on the left hand side o f a verb may also
prevent an attachment of the items fi'om the right hand
side of the verb).

The interpreter of our grammar solves these
situations itself. Every time a new item is created, the
interpreter checks, if such an item with the same
structure and coverage already exists. If yes, the new
item is deleted.

This property o f the interpreter is used together
with other kinds o f pruning techniques in all phases of
grammar checking. In addition, there are also some
other techniques used especially in phases b) and c).
The work with unambiguous input symbols allows fast
parsing in the phase a) (CYK is polynomial with respect

to the length o f the input), but creates some problems in
the context o f constraint relaxations used in subsequent
phases. For example, a typical error in "free word
order' ' languages is an error in agreement. Let us
suppose that we have the following three input words
(the actual lexical value o f these words may be
neglected):

Preposition (accusative or locative) Adjective
(animate or inanimate gender, genitive or accusative
sing.) Noun (animate, genitive or accusative sing.)

These words represent 2 + 4 + 2 = 8
unambiguous items. If we try to create a prepositional
phrase without constraint relaxation, we get one
resulting item PP(animate, accusative sing.). On the
other hand after the relaxation o f constraints there are
16 items created. One of them does not contain any
syntactic inconsistency, remaining 15 has one or two
syntactic inconsistencies. In a nondeterministic parser
all 16 variants are used in the subsequent parsing. This
causes a combinatorial explosion of mostly incorrect
results.

There are two ways how to solve this problem.
The first possible solution is to relax the constraints in
certain order (to apply a hierarchy on constraints). We
have chosen the other possible way, which prefers the
subtrees with minimal number of errors. Every time a
new branch or subtree is created, it is compared with the
other branches or subtrees with the same structure and
coverage and if it contains more errors than those
already existing, it is not parsed further.

This technique substantially speeds up the
processing of rules with relaxed constraints, but it has
also one rather unpleasant side effect: the syntactic
inconsistencies may be suppressed and appear later in a
different location. This makes the task o f the evaluating
part o f our system a bit more difficult, but nevertheless
the gain on effectivity not accompanied by the loss of
recall justifies the use of this technique.

Conclusion
The main purpose of the demo of our system is

to demonstrate a method of grammar based grammar
checking of a "free word order" language. The system is
far from being ready for commercial exploitation - the
main obstacle is the size o f the syntactic dictionary
used. Grammar based methods require a complex
syntactic information about words. To build a syntactic
dictionary of about 150 000 items is a task which
exceeds our current capacities with respect both to
manpower and funds. It would be interesting to continue
the work on our system towards the development of
statistical methods for this task.

153

References
[COL94] V.Kubofi, M.Plfitek: A Grammar Based
Approach to Grammar Checking of Free Word Order
Languages. In: Proceedings ofCOLING'94, Kyoto
1994, pp. 906-910

[TR96] T.Holan, V.Kubofi, M.Plfitek: Formal Tools
Supporting Development of a Grammar Checker,
Technical Report No.9/96, Charles University, Prague,
December 1996

[CH83] J.Carbonell and P.Hayes: Recovery strategies
for parsing extragrammatical language. In: American
Journal of Computational Linguistics,1983 9(3-4)
pp.123-146.

[K94] Z.Kirschner: CZECKER - a Maquette Grammar-
Checker for Czech. In: The Prague Bulletin of
Mathematical Linguistics 62, MFF UK Prague, 1994,
pp. 5-30.

[M96] L.Mitjushin: An Agreement Corrector for
Russian. In: Proceedings of COLING'96, Copenhagen
1996, pp. 776-781

[$97] Klaas Sikkel: Parsing Schemata - A Framework
for Specification and Analysis of Parsing Algorithms,
Texts in Theoretical Computer Science - An EATCS
Series, ISBN 3-540-61650-0, Springer Verlag Berlin /
Heidelberg / New York, 1997

i The work was supported by the tollowing research
grants: GA(~R 201/96/0195, RSS/H ESP No. 85/1995
and JEP PECO 2824 ,,Language Technologies for
Slavic Languages."

154

