tnvestigating the possibility of a yicroprocessor-based MACHINE TRANSLATION SYSTEM

Harold L. Somers
Centre for Computational Linguistics
University of Manchester Institute of Science and Technology PO Box 88, Manchester M60 1 TiD, England

ABSTRACT

This pader describes an on-going research project being carried out by scaff and scudents at the Centre for Compucational Linguistics to examine the feasibilicy of Machine Translation (YT) in a microprocessor enviromment. The system incorporates as far as possible features of largescale YT systems chat have proved desirable or effective: it is multilingual, algorithms and data are scrictly separated, and the system is highty modular. Problems of terminolopical polysemy and syntactic complexity are reduced via the notions of controlled vocabulary and restricted syntax. Given these constraints, it seems feasible to achieve translation via an 'interlingua', avoiding any language-pair oriented 'transfer' stage. The paper concentrates on a description of the separate modules in the translation process as they are currently envisaged, and decails some of the problems specific to the microprocessor-based approach to it that have so far come co light.

I B.ackcnound A:

This paper describes preliminary research in the design of Bede, a limited-syntax concrolledoncabulary Machine Translation system to run on a microprocessor, Eranslatine between English, French, German and Dutch. Our experimental corpus is a car-radio manual. Bede (named after the 7th Cencury English linguist, is essentially a eesearch project: we are not immediatelv concerned rich commercial apolications, though such are clearly possible if the research proves fruitful. York on Rede at chis stage though is primarily experimentil. The aim at the moment is to investigate the excent to which microprocessorbased er suscem of advanced desien is oossible, and che limitations that have to be imposed in order ro achieve a woriking system. This paper eescrines Ehe overall syctem desiģn snccification t) taict we are currently working.

In the basic design of the system we actempt to incorporate as much as possihle features of largescale T systems that have proved to be desirable or effective. Thus. Bede is mulcilingual by !esign. algorithms and lineuistic daca are strictly separatert. and the system is designed in onre o- less independent modules.

[^0]both dynamic (created by and manipulated during the translation process) and static (dictionaries and linguistic rule packages) are constrained to be as economical in terms of storage space and access procedures as possible. Limitations on incore and perinheral storage are importanc considerations in the system design.

In large general purpose MT systems, it is necessary to assume that failure to cranslate the given input correctly is generally not due to incorrectly formed input, buc to insufficiencly elaborated cranslacion algorichms. This is parcicularly due to two problems: the lexical problem of choice of appropriate translation equivalents, and the strategic orohlem of effective analysis of the wide range of syntactic pacterns found in natural language. The reduction of these problems via the notions of controlled vocabulary and restricted syntax seems particularly appropriate in the microprocessor environment, since che alcernative of making a system infinitely extendable is probably not Eeasible.

Given these constraints, it scems feasible to achieve translacion via an Incerlingua, in shich the canonical structures from the source languaze are mapped directly onto those of che taryec language(s), avoiding any language-pait orienced 'transfer' stage. Translacion chus takes place in twu paasts: analysis or source cext and synthesis of target text.

A. Incorporacion of recenc design princioles

Yodern IT syscem design can be characterised by chree principles chat have proved to be destrable and effective (Lemmann ec al, 1980: $\mathrm{T}-\mathrm{3}$): each of chese is adhered to in the desipn of Rede.

Rede is multilingual by design: early t: systems were designed with specific language-oairs in mind, and translation algorithms vere elaborated on this basis. The main conseouence of this was that source language analysis sas effected within the perspective of the given targer language, and was therefore often of little or no use on the addition into the system of a further language (cf. King, 1081:12; : ing a Perschke, 1982:28).

In Bede, chere is a strict separation of algortthms and linguistic data: sarly "T =yscoms 'vere quite sirmly 'translation aromerns', ins inv
underlying linguistic theory which might have been present was inextricably bound up with the program itself. This clearly entailed the disadvantage that any modification of che system had to be done by a skilled programmer (ef. Johnson, 19RO:140). Furthermore, the side-effects of apparently quite innocent modifications were often quite farreaching and difficult to trace (see for example Bostad, 1982:130), Although this has only recently become an issue in MT (e.g. Vauquois, 1979:I.3; 1981:10), it has of course for a long time been standard practice in other areas of knowledge-based programing (Newell, 1973; Davis \& King, 1977).

The chird principle now current in MT and to be incorporated in Bede is chat the rranslation process should be modular. This approach was a feature of the earliest 'second generation' systems (cf. Vauquois, 1975:33), and is characterised by the general notion that any complicated computational task is best cackled by dividing it up into smaller more or less independent sub-tasks which communicate only by means of a striccly defined interface protocol (Aho et al, 1974). This is cypically achieved in the MT environment by a gross division of the translation process inco analysis of source language and synchesis of carget language, possibly with an intermediate transfer stage (see I.D below), with these phases in turn sub-divided, for example into morphological, lexical and syntactico-semantic modules. This modularity may be reflected both in the linguistic organisation of the translation process and in the provision of software devices specifically tailored to the relevant sub-task (Vauquois, 1975:33). This is the case in Bede, where for each sub-task a grammer incerpreter is provided which has the property of being no more powerful than necessary Eor the cask in quescion. This contrasts with the approach taken in TAIM-Mécéo (TAUM, 1973), where a single general-purpose device (Colmerauer's (1970) 'O-Systems') is orovided, with the associated disadvantage that for some 'simple' casks the superfluous power of the device means that processes are seriously uneconomical. Bede incorporates five such 'grammar types' with associated individual formalisms and processors: these are described in detail in the second half of this paper.

B. The microprocessor environmenc

It is in the microprocessor hasis that the principle incerest in this system lies, and, as mentioned above, the main concern is the effects of the restrictions that the environment imposes. Development of the Bede prototype is presently taking place on 280-based machines which provide $64 k$ bytes of in-core memory and 720 k bytes of peripheral store on two 5-1/4" double-sided double-density floppy disks. The intention is that any comercial version of Bede would run on more powerful processors with larger address space, since we feel that such machines will soon rival the nonularity of the less powerful Z80's as the standard desk-ton hardware. Programming so far has hee: in Pascal-" (Sorcim, 1979), a Pascal
dialect closely resembling UCSD Pascal, but we are conscious of the fact that both C (Kerniginan \& Ricchie, 1978) and BCPL (Richards \& WhicbyStrevens, 1979) may be more suitable for some of the software elements, and do not rule our completing the protocype in a number of languages. This adds the burden of designing compatible datastructures and interfaces, and we are currentiy investigating the relative merits of these languages. Portability and efficiency seem to be in conflict here.

Microprocessor-based MT concrasts sharply with the mainframe-based activity, where the significance of problems of economy of storage and efficiency of programs has decreased in recent years. The possibilicy of incroducing an elemenc of human interaction with che system (cf. Kay, 1980; Melby, 1981) is also highlighted in chis environmenc. Contrast systems like SYSTRAN (Toma, 1977) and GETA (Vauquois, 1975, 1979; Boicet \& Nedobejkine, 1980) which work on the principle of large-scale processing in barch mode.

Our experience so far is that the economy and efficiency in data-structure design and in the elaboration of interactions between programs and data and between different modules is of paramount importance. While ic is relacively evident that large-scale $M T$ can be simulated in the microprocessor environment, the cost in real time is tremendous: entirely new design and implementation strategies seem to be called for. The ancient skills of the programmer that have become eroded by the generosity afforded by modern mainframe configurations becone highly valued in this microprocessor application.

C. Controlled vocabulary and restricted syntax

The state of the art of language processing is such that the analysis of a significanc range of syncactic patcerns has been shown to be possible, and by means of a number of different approaches. Research in this area nowadays is concentrated or the treatment of more problematic constructions (e.g. llarcus, 1980). This observation has led us to believe that a degree of success in a small scale MT project can be achieved via the notion of restricting the complexity of acceptable input, so that only constructions chat are sure to ne correctly analysed are permitted. This notion of restricted syntax MI has been tried with some success in larger systems (cf. Flliston, 1670 ; Lawson, 1079:81f; Somers \& McNaught, 1980:40), resulting boch in more accurate translation, anc in increased legibilicy from the human point of view, As flliston points out, the development of strict guidelines for writers leads not only t the use of simpler constructions, but also to the avoidance of potentially ambiguous rext. In either case, the benefits for :TT are obvious. Less obvious however is the acceptabillty of such constraints; yet 'restricted syntax' need not imply 'baby talk', and a reasonably extensive range of constructions can be included.

Just as problems of suncactic analysis ca: or alleviaced $t y$ imposing some degree of control aver
the syncaceic complexity of the input, so the corresponding problem of lexical disambiguation that large-scale MT systems are faced with can be eased by the notion of controlled vocabulary. A major problem for MT is the choice of appropriate translation equivalents at the lexical level, a choice often determined by a variecy of factors at all linguistic levels (syntax, semancics, pragmatics). In the field of multilingual terminology, chis problem has been tackled via the concept of tarminological equivalence (WUster, 1971): for a given concept in one language, a cranslation in anocher language is established, chese being considered by definition to be in one-co-one correspondence. In che case of Bede, where the subject-matcer of the cexts to be cranslated is Eixed, such an approach for the 'rechnical cerms' in che corpus is clearly feasible; che notion is extended as far as possible co general vocabulary as well. For each concept a single cemm only is permicted, and alchough the resulting style may appear less macure (since che use of near synonyms for the sake of variecy is not permicted), the problems described above are somewhat alleviated. Polysemy is not entirely avoidable, but if reduced to a bare minimum, and permited only in specific and acknowledged circumstances, the problem becomes more easily manageable.

D. Interlingua

A significant dichotomy in MT is between the 'cransfer' and 'interlingua' approaches. The former can be characterised by the use of bilingual cransfer modules which convert the results of the analysis of the source language into a representacion appropriate for a specific targer language. This concrasts with the incerlingua approach in which the result of analysis is passed directly to the appropriate synchesis module.

It is beyond the scope of the present paper to discuss in detail the relacive merits of the two approaches (see Vauquois, 1975:142ff; Hutchins, 1978). We should however consider some of che major obstacles inherent in the interlingua approach.

The development of an Incerlingua for various purposes (not only eranslation) has been the subject of philosophical debate for some years, and proposals for YT have included the use of formalized nacural language (e.g. Mel'čuk, 1974; Andreev, 1967), artificial languages (like Esperanto), or various symbolic representacions, whether linear (e.z. Bolting, 1961) or ocherwise (e.g. Jilks, 1973). Most of these approaches are problematic however (for a thorough discussion of the incerlingua approach co : T . see Otcen \& Pacak (1971) and Sarnes (1983)). Nevertheless, some incerlingua-based MT systems have been developed co a considerable degree: for example, the Cirenoble coam's Eirse actempts at MT took this approach (Veillon, 1968), while the TITUS system still in use at the tascicut Textile de France (Ducrot 1972; 7ingel, 1978) is claimed co be interlingu, b-bsed.

It seems that it can be assumed a priori that an entirely language-independent theoretical representacion of a given text is for all praceical purposes impossible. A more realistic target seems to be a representation in which significant syntactic differences between the languages in question are neutralized so that the besc one can aim for is a languagesmspecific (sic) representation. This approach implies the definition of an Interlingua which takes advancage of anything the languages in the system have in common, while accomodating their idiosyncrasies. This means that for a system which involves several fafrly closely related languages the incerlingua approach is at least fessible, on the understanding that the incroduction of a significancly different type of language may involve the complece redefinition of the Incerlingua (Barnes, 1983). From che poinc of view of Bede, then, the common base of the languages involved can be used to great advantage. The notion of rescricted syncax described above can be employed to filcer out constructions chat cause particular problems for the chosen Incerlingua represencation.

There remains however the problem of the represencation of lexical items in the Interlingua. Theorecical approaches to this problem (e.g. Andreev, 1967) sem quite unsatisfactory. Buc the notion of controlled vocabulary seems to offer a solution. If a one-co-one equivalence of 'cechnical' terms can be achieved, this leaves only a relacively small area of vocabulary for which an interlingual represencation must be devised. It seems reasonable, on a small scale, to treat general vocabuiary in an analagous way to cechnical vocabulary, in parcicular creating lexical items in one language that are ambiguous with respect co any of the other languages as 'homographs'. Their 'disambiguation' musc cake place in Analysis as chere is no biligual 'Transfer' phase, and Synthesis is purely decerministic. While chis approach would be quite unsuitable for a larzescale general purpose MT system, in the present context - where the problem can be minimised - ic seems to be a reasonable approach.

Our own model for the Bede Interlingua has not yet been finalised. We believe this to be an area for research and experimentation once the system software has been more fully developed. Our current hypochesis is chat the Incerlingua will cake the form of a canonical representation of the cext in which valency-boundness and (deep) tise will play a significanc role. Sencential features such as tense and aspect oill be caprured by i 'universal' system of values for the languages involved. This conception of an interlingua clearly falls short of the language-independent pivot representation cypically envisaged (cf. Boitet \& Nedobejkine, 1980:2), but we hope $=0$ demonstrate that it is sufficient for the languages in our system, and that it could be adapted without significant difficulties co cater for the introduction of ocher (related) Nestern European languages. We feel that research in chis area will, when che cime comes, be a significane
and valuable by-product of the project as a whole.

II. DESCRIPTION OF THE SYSTEM DESIGN

In this second half of che paper we present a description of the eranslation process in Bede, as it is currently envisaged. The process is divided broadly into two parts, analysis and synthesis, the interface between the two being provided by the Incerlingua. The analysis module uses a Chart-like structure (cf. Kaplan, 1973) and a series of grammars to produce from the source text the Interlingua tree structure which serves as input to synchesis, where it is rearranged into a valid surface structure for the target language. The 'translation unic' (TU) is taken to be the sentence, or equivalenc (e.g. section heading, title, figure caption). Full details of the rule formalisms are given in Somers (1981).

A. String segmentation

The TU is first subjected to a two-stage string-segmentation and 'lemmatisation' analysis. In the first stage it is compared word by word with a 'stop-list' of frequencly occurring words (mostly function words); words not found in the stop-list undergo string-segmentation analysis, again on a word by word basis. Stringsegmentation rules form a finite-state grammar of affix-stripping rules ('A-rules') which handle mostly inflectional morphology. The output is a Chart with labelled arcs indicating lexical unit (LU) and possible incerpretation of the stripped affixes, this 'hyporhesis' to be confirmed by dictionary look-up. By way of example, consider (1), a possible French rule, which takes any word ending in -issons (e.g. finissons or hérissons) and constructs an arc on the Chare recording che hypothesis that the word is an inflected form of an '-ir' verb (i.e. finir or therir).
(1) $V+\cdots-$ ISSONS $" \rightarrow V+\cdot+I R "$
$[P E R S=1$ \& $N U M=P L U R \&$ TENSE=PRES \& $M O O D=I N D I C]$
Ac the end of dictionary look-up, a temporary 'sencence dictionary' is created, consisting of copies of the dictionary entries for (only) those LUs found in the current TU. This is purely an efficiency measure. The sentence dictionary may of course include entries for homographs which will later be rejected.

B. Scructural analysis

1. 'P-rules'

The chart then undergoes a two-stage structural analysis. In the first stage, context-sensitive augmented phrase-scructure rules ('P-rules') work towards creating a single arc spanning the entire TU. Arcs are labelled with appropriace syntactic class and syncactico-semantic Eeature information and a trace of the lower ares which have been subsumed from which the parse cree can be simply excracted. The trivid p-rule (2) is provided as an examole.
(2) $\langle N U M(D E T)=N U M(N) \& \operatorname{GDR}(D E T)$.INT.GDR(ㄴ) \neq ? ? > DET + N \rightarrow NP
$\langle\operatorname{GDR}(N P):=\operatorname{GDR}(N) \& N U M(N P):=N L M(N)>$
P-rules consist of 'condition stipulations', a 'geometry', and 'assignment stipulations'. The nodes of the Chart are by default identified by the value of the associated variable CLASS, though it is also possible to refer to a node by a local variable name and cest for or assign the value of CLASS in the scipulations. Our rule formalisms are quite deliberately designed to reflect the Eormalisms of traditional linguistics.

This formalism allows experimentarion with a large number of different concext-free parsing algorichms. We are in fact still experimenting in this area. For a similar investigation, though on a machine with significancly different time and space constraints, see Slocum (1981).

2. 'T-rules'

In the second stage of structural analysis, the tree structure implied by the labels and traces on these arcs is disjoined from the Chart and undergoes general tree-co-tree-transductions as described by 'T-rules', resulting in a single tree structure representing the canonical Eorm of the TU.

- The formalism for che T-rules is similar to that for the P-rules, except in the geometry part, where tree structures racher than arc sequences are defined. Consider the necessarily more complex (though still simplified) example (3). which regularises a simple English passive.

$$
\begin{align*}
& \text { < LU(AUX) }=\text { "BE' \& PART }(V)=\text { PASTPART \& } \tag{3}\\
& \operatorname{LH}(P R E P)=' B Y \prime \text { \& CASE (NP\{2\})=AGEMT' } \\
& S(\operatorname{NP}\{1\}+\operatorname{AUX}+V+\operatorname{NP}\{2\}(P R E P-5) \\
& \rightarrow S(N P\{2\}(S)-V+N P\{1\}) \\
& \angle \operatorname{DSF}(N P\{2\}):=D S U J \& \operatorname{VOICE}(V):=P A S S V \& \\
& \operatorname{DSF}(N P\{1\}:=D O B J>
\end{align*}
$$

Notice the necessity to. 'disambiguate' che t:vo NPs via curly-brackerted disambiquators; the possibilicy of defining a partial geomecry via the 'dummy' symbol ($\$$); and how the tux and PREP are eliminated in the resulting cree structure. Labellings for nodes are copied over by defauls unless specifically suppressed.

Wich source-language Lus replaced by unique multilingual-dictionary addresses, chis canonical represencacion is the Incerlingua which is passed for synthesis inco the carget language(s).

C. Synchesis

Assuming the analysis has been correctly performed, synthesis is a relatively straightforward deterministic process. Synthesis commences with the application of further T-rules which assign new order and structure to the Incerlingua as appropriace. The sunchesis T-rules for a given language can be viewed as analogues $=$ E the t-rules that are used for analysis of that language, though it is unlikely shat for sunchesis
the analysis rules could be simply reversed.
Once the desired structure has been arrived at, the trees undergo a series of context-sensitive rules used to assign mainly syncactic features co the leaves ('L-rules'), for example for the purpose of assigning number and gender concord (etc.). The formalism for the L-rules is again similar to that for the P -rules and T -rules, the geometry part this time definting a single tree structure with no structural modification implied. A simple example for German is provided here (4).
(4)

<SF(NP)=SUBJ>

$\mathrm{NP}(\mathrm{DET}+\mathrm{N})$
<CASE (DET): =NOM \& CASE(N):=NOM \& NUM (DET): $=N U M(N P) \& G D R(D E T):=\operatorname{GDR}(N)>$

The list of labelled leaves resuleing from the application of L-rules is passed to morphological synthesis (the superior branches are no longer needed), where a finite-state gramar of morphographemic and affixation rules ('M-rules') is applied to produce the target string. The formalism for M-rules is much less complex than the A-rule formalism, the grammar being again straight forwardly decerministic. The only taxing requirement of the M-rule formalism (which, at the time of wricing, has not been finalised) is that it must peimit a wide variecy of string manipulations to be described, and that it must define a transaparent interface with the dictionary. A typical rule for French for example might consist of scipulations concerning information found both on the leaf in question and in the dictionary, as in (5).
(5) leaf info.: CLASS=V; TENSE=PRES; NUM=SING; PERS=3; MOOD=INDIC
dict. info.: $\operatorname{CONJ}(V)=I R R E G$
assign: Affix "-T" to STEM1(V)

D. General comments on system design

The general modularity of the system will have been quice evident. A key factor, as mentioned above, is chat each of these grammars is juse powerful enough for the cask required of it: chus no computing power is 'wasted' at any of the incermediate stages.

At each interface between grammars only a small part of the data structures used by the donating madule is required by the receiving module. The 'unwanted' data structures are written to peripheral score to enable recovery of parcial scructures in the case of failure or miscranslation, though automatic backtracking to previous modules by the system as such is not envisaged as a major component.

The 'scatic' data used by the system consist of che different sets of linguistic rule packages, plus the dictionary. The system essentially has one large mulcilingual dictionary from which numerous software packages generate various subdictionaries as required either in the Eranslation process itself, or for lexicographers
working on the system. Alphabetical or other structured language-specific listings can be produced, while of course dictionary updating and editing packages are also provided.

The system as a whole can be viewed as a collection of Production Systems (PSs) (Newell, 1973; Davis \& King, 1977; see also Ashman (1982) on the use of PSs in MT) in the way that the rule packages (which, incidentally, as an efficiency messure, undergo separate syntax verification and 'compilation' inco incerpretable 'code') operate on the daca structure. The system differs from the classical PS secup in distributing its scatic data over two databases: the rule packages and the dictionsry, The combination of the rule packages and che dictionary, the software interfacing chese, and the rule incerpreter can however be considered as analgous co the rule interprecer of a classical PS.

III. CONCLUSION

As an experimental research project, Bede provides us with an extremely varied range of compucacional linguistics problems, ranging from the principally linguistic task of rule-writing, to the essentially computational work of software implemencation, with lexicography and terminology playing their part along the way.

But we hope $t 00$ that Bede is more than an academic exercise, and that we are making a significant concribution to applied computational linguiscics research.

IV. ACKNOWLEDGMENTS

I present ehis paper only as spokesman for a large group of people who have worked, are working, or will work on Bede. Therefore $[$ would like to thank colleagues and students at C.C.L., past, present, and future for their work on the project, and in particular Rod Johnson, Jock McNaught, Pece Whitelock, Kieran Kilby, Tons Barnes, Paul Bennert and Reverley Ashman for helo with this write-up. I of course accept responstbility for any errors that slipped chrough chat cight net.

V. REFERENCFS

Aho, Alfred V., John E. Hoperoft \& Jeffrey D. Ullman. The design and analysis of computer algorichms. Reading, Mass.: Addison-iveslev, 1974.

Andreev, N.D. The intermediary lanquage as the Eocal poinc of machine cranslacion. In A.D. Booch (ed), Machine Translacion, Amsterdam: North-Holland, 1967, 1-27.

Ashman, Beverley D. Production Systems and their applicacton to Machine Translacion: Eransfer Repore (CCL/UMIST Report No. 82/9). Yanchester: Centre for Computational Linguistics, I'niversicy of Manchester Insticuce of Science and Technology, 1982.

Barnes, Antonia M.N. An investigation into the syntactic struccures of abstracts, and the definition of an 'interlingua' for their translation by machine. MSc thesis. Centre for Computational Linguistics, Universicy of Manchescer Institute of Science and Technology, 1983.

Boitet, C. \& N. Nedobejkine. Russian-French at GETA: Outline of che method and decailed example (Rapport de Recherche No. 219). Grenoble: GETA, 1980.

Bolting, Rudolph. A double intermediate language for Machine Translation. In Allen Kent (ed), Information Recrieval and Machine Translation, Part 2 (Advances in Documencation and Library Science, Volume III), New York: Incerscience, 1961, 1139-1144.

Bostad, Dale A. Quality control procedures in modification of the Air Force Russian-English MT system. In Veronica Lawson (ed), Practical Experience of Machine Translation, Amsterdam: Norch-Holland, 1982, 129-133.

Colmerauer, Alain. Les systèmes-Q: ou un formalisme pour analyser et synthéciser des phrases sur ordinateur. (Publication interne no. 43). Moncréal: Projet de Traduction Automatique de l'Université de Montréal, 1970.

Oavis, Randall \& Jonathan King. An overview of Production Systems. In E.W. Elcock \& D. Michie (eds), Machine Intelligence Volume 8: Machine represencation of knowledge, New York: Halsted, 1977, 300-332.

Ducrot, J.M. Research for an automatic translation system for the diffusion of scientific and technical rextile documentation in English speaking countries: Final report. Boulogne-Billancourt: Insticut Textile de France, 1972.

Elliston, John S.G. Computer aided cranslacion: a business viewpoint. In Barbara M. Snell (ed) Translating and the computer, Amsterdam: NorthHolland, 1979, 149-158.

Johnson, Rod. Contemporary perspeccives in machine translation. In Suzanne Manon \& Vigge Hjorneger Pedersen (eas), Human Eranslation machine translation (Noter og Kommencarer 39). Odense: Romansk Insticut, Odense Universicec, 1980, 133-147.

Hucchins, w.J. Machine cranslation and machine aided translation. Journal of Documentation, 1978, 34:119-159.

Kaplan, Ronald M. A general syntactic processor. In Randall Rustin (ed), Natural Language Processing (Courant Computer Symposium 3), New York: Algorithmics Press, 1973, 193-241.

Kay, 'rartin. The proper place of men and machines in language cranslation (Report io. CSL-80-11). Palo lito. CA: Xerox, l980.

Kernighan, Brian $N . \&$ Dennis 9. Ritchic. The C programming language. Englewood Cliffs, খj: Prentice-llall, 1978.

King, M. EUROTRA - a European system for machine translation. Lebende Spracher 1981, 26:12-14.

King, M. \& S. Perschke. EUROTRA and its nbjectives. Multilingua, 1982, 1:27-32.

Lawson, Veronica. Tigers and polar bears, or: translating and the computer. The lncnrpnrated Linguist, 1979, 18:81-85.

Lehmann, Winfred P., Winfield S. Bennert. Jonatian Slocum, Howard Smich, Solveig M.V. Pfluger \& Sandra A. Eveland. The METAL system (RADC-TR-80-374). Austin, TX: Linguistics Research Center, Universicy of Texas, 1980.

Marcus, Mitchell P. A theory of suntactic recognition for natural language, Cambridge, MA: MIT Press, 1980.

Melby, Alan K. Translators and machines - can they cooperate? META, 1981, 26:23-34.

Mel'čuk, I.A. Grammarical meanings in interlinguas for automacic cranslation and the concept of grammatical meaning. In V. Ju. Rozencvejg (ed), Machine Translation and Apolied Linguistics, Volume I, Frankfurt am Main: Achenaion Verlag, 1974, 95-113.

Newell, A. Production systems: Models of control structures. In William G. Chase (ed) - Visual information processing, Vew York: Academic Press, 1973, 453-526.

Otten, Sichael \& Milos G. Pacak. Incermediate languages for aucomatic language processing. In Julius T. Tou (ed), Software Engineering: Cor:is III, Volume 2, New York: Academic Press, 1^{c-1}, 105-118.

Richards, Marcin \& Colin Whitby-Strevens. 3C:y the language and its compiler. Gambridge: Cambridge Universicy Press, 1070.

Slocum, Jonathan. A practical comparison ,f parsing strategies for Machine mranslation and ocher Natural Language Processing Purposes. Phr dissertation. U'niversicy of Texas at qustin, 1981. [= Technical Report NL-i, Repartment of Computer Sciences, the University of Texas, Austin, TX.]

Somers, H.L. Bede - the CCL/MMIST Machine Translation system: Rule-wricing formalism isrd revision) (CCL/UMIST Report No. 81's`. Manchester: Centre for Computationa! Linguistics, University of Manchester Insticute of Science and Technology, 1981.

Somers, M.L. \& J. McNaught. The translator as a computer user. The Incorporated Lineuist, lonr. 19:49-53.

```
Sorcim. Pascal/m user's_eferencemanual. :'alnut
    Creek, Cit: Digical varketing, 1079
T.tIM. Le système de craduction aucomatique de l'liniversité de Yontréal (TAlM). META, 1973, 18:227-289.
Toma, P.P. SYSTRAN as a mulcilingual Machine Translation system. In Comission of che European Communities, Third European Congress on Information Systems and Metworks: Overcoming ehe language harrier, Volume 1, MUnchen: Verlag nokumentation, 1977, 569-581.
Vauquois, Bernard. La craduction automacique à Grenoble (Documents de Linguistique Quanticative 24), Paris: Dunod, 1975.
Vauquois, B. Aspects of mechanical translation in 1979 (Conference for Japan IBM Scientific Program). Grenoble: Groupe d'Esudes pour la Traduction Automatique, 1979.
Vauquois, Bernard. L'informatique au service de la craduction. META, 1981. 26:9-17.
Veillon, G. Description du langage pivot du système de craduction automarique du C.E.T.A. T.A. Informations, \(1088,1: 8-17\).
Wilks, Yorick. An Artificial Intelligence approach to Machine Translation. In Roner C. Schank \& Zenneth Yark Colby (eds), Compucer models of thought and language, San Francisco: Freeman, 1973, 114-151.
VUster, Eugen. Regriffs- und Themaklassifikationen: Unterschiede in ihrem Wesen und in ihrer Anwendung. Nachrichcen fur Dokumencation, 1071. 22:98-104.
7ingel, Hermann-Josef. Experiences with TITUS It. Incernatinnal Classification, 1979, 5:33-37.
```


[^0]: The micronrocessor environment means that - :reri, at size aro innortine: tata structures

