Le Yu


2024

pdf bib
Cluster Language Model for Improved E-Commerce Retrieval and Ranking: Leveraging Query Similarity and Fine-Tuning for Personalized Results
Duleep Rathgamage Don | Ying Xie | Le Yu | Simon Hughes | Yun Zhu
Proceedings of the Seventh Workshop on e-Commerce and NLP @ LREC-COLING 2024

This paper proposes a novel method to improve the accuracy of product search in e-commerce by utilizing a cluster language model. The method aims to address the limitations of the bi-encoder architecture while maintaining a minimal additional training burden. The approach involves labeling top products for each query, generating semantically similar query clusters using the K-Means clustering algorithm, and fine-tuning a global language model into cluster language models on individual clusters. The parameters of each cluster language model are fine-tuned to learn local manifolds in the feature space efficiently, capturing the nuances of various query types within each cluster. The inference is performed by assigning a new query to its respective cluster and utilizing the corresponding cluster language model for retrieval. The proposed method results in more accurate and personalized retrieval results, offering a superior alternative to the popular bi-encoder based retrieval models in semantic search.

2023

pdf bib
Pretraining Language Models with Text-Attributed Heterogeneous Graphs
Tao Zou | Le Yu | Yifei Huang | Leilei Sun | Bowen Du
Findings of the Association for Computational Linguistics: EMNLP 2023

In many real-world scenarios (e.g., academic networks, social platforms), different types of entities are not only associated with texts but also connected by various relationships, which can be abstracted as Text-Attributed Heterogeneous Graphs (TAHGs). Current pretraining tasks for Language Models (LMs) primarily focus on separately learning the textual information of each entity and overlook the crucial aspect of capturing topological connections among entities in TAHGs. In this paper, we present a new pretraining framework for LMs that explicitly considers the topological and heterogeneous information in TAHGs. Firstly, we define a context graph as neighborhoods of a target node within specific orders and propose a topology-aware pretraining task to predict nodes involved in the context graph by jointly optimizing an LM and an auxiliary heterogeneous graph neural network. Secondly, based on the observation that some nodes are text-rich while others have little text, we devise a text augmentation strategy to enrich textless nodes with their neighbors’ texts for handling the imbalance issue. We conduct link prediction and node classification tasks on three datasets from various domains. Experimental results demonstrate the superiority of our approach over existing methods and the rationality of each design. Our code is available at https://github.com/Hope-Rita/THLM.

2022

pdf bib
A Fine-grained Chinese Software Privacy Policy Dataset for Sequence Labeling and Regulation Compliant Identification
Kaifa Zhao | Le Yu | Shiyao Zhou | Jing Li | Xiapu Luo | Yat Fei Aemon Chiu | Yutong Liu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Privacy protection raises great attention on both legal levels and user awareness. To protect user privacy, countries enact laws and regulations requiring software privacy policies to regulate their behavior. However, privacy policies are written in professional languages with many legal terms and software jargon that prevent users from understanding and even reading them. It is necessary and urgent to use NLP techniques to analyze privacy policies. However, existing datasets ignore law requirements and are limited to English. In this paper, we construct the first Chinese privacy policy dataset, namely CA4P-483, to facilitate the sequence labeling tasks and regulation compliance identification between privacy policies and software. Our dataset includes 483 Chinese Android application privacy policies, over 11K sentences, and 52K fine-grained annotations. We evaluate families of robust and representative baseline models on our dataset. Based on baseline performance, we provide findings and potential research directions on our dataset. Finally, we investigate the potential applications of CA4P-483 combing regulation requirements and program analysis.